
NCID - Network Caller ID User Manual
![NCID](images/ncid-1.jpg)

Copyright © 2014-2024

Authors:
John L Chmielewski

Last edited: Apr 10, 2024

Table of Contents

Introduction
Getting Started
Installation
Obtaining Caller ID
Supported Clients
Client Output Modules
Using NCID
FAQ
Verbose Levels
Contributors
TODO
LICENSE

Introduction

NCID (Network Caller ID) is Caller ID (CID) distributed over a network to a variety of devices and computers.

The NCID server monitors either a modem, Caller ID device, or gateway (e.g., SIP, VoIP, smartphones) for the CID
data. The data is collected and sent, via TCP, to one or more connected clients. The server supports multiple
gateways which can be used with or without a modem or device. The server also supports one line text
messages.

The NCID project website is the central place to go for the latest downloads, updated documentation and
user/technical support for the official NCID package and its optional client packages.

This document contains information on how to get started with NCID, the hardware needed, a Frequently Asked
Questions (FAQ) section and a TODO list. It also provides information on supported clients, gateways and
optional server features. Troubleshooting information is also provided.

Getting Started

Table of Contents

NCID can be overwhelming for users who have never used it. Current users of NCID are probably not aware of all
of its features, or how to use them properly. This document will try to help with those cases. The FAQ should also
be of some help.

In this document:

NCID is the package name

http://ncid.sourceforge.net/

ncidd is the server name
ncid is the client name
Unix is a generic term to mean any UNIX-like or Linux-like operating system, e.g., Fedora, FreeBSD, Mac
OS X, Debian, etc.
Uncommenting a line means to remove the #

Getting Started Index

Install the NCID package
Configure the ncidd server
Configure the ncid client
Configure call log rotation
Configure yearly call log
NCID startup

Install the NCID package

See the list of Package Distributions.

SourceForge distributes NCID packages for several operating systems. In addition, operating system specific
third parties distribute NCID. For example, there are Ubuntu and Fedora repositories that include NCID, making
it easy to install with their package management applications; however, they are not always up-to-date with the
latest version at SourceForge.

The first step is to download and install the NCID server, optional gateways and client. You can download the
NCID packages from sourceforge or a repository for your operating system if it is up to date.

If you are using Fedora, Ubuntu, or raspios, be aware that NCID is split into multiple rpm and deb packages. The
server package is required. The gateways package is needed if you are using a gateway instead of a modem. The
client and default output modules package is needed if you want to use the basic ncid client instead of another
supported client, or if you want to use an output module.

The Macintosh shell package and the FreeBSD shell package on sourceforge have the complete NCID system.

There are many Linux distributions based on Redhat or Ubuntu so the Fedora or Ubuntu packages may install
just fine. (For example, Linux Mint is an operating system based on Ubuntu.) Refer to the INSTALL-"operating
system" section for your "operating system".

If you cannot locate a package, you can download the source, compile and install it. Refer to the INSTALL
(generic) section of this documentation.

Configure the ncidd server

Now that you have installed NCID, you need to set the country code to format the telephone number and
configure the method used to obtain Caller ID:

set the country code to format the telephone number
a Caller ID modem connected to a Unix computer
the serial NetCallerID device connected to a Unix computer
the CTI Comet USB device via the NCID XDMF gateway
the Holtek HT9032D based PSTN Caller ID module via the NCID XDMF gateway
a Caller ID modem on a Windows computer via the NCID YAC (Yet Another Caller ID) gateway
VoIP (Voice over Internet Protocol) phones via the NCID SIP (Session Initiation Protocol) gateway
Whozz Calling (WC) Ethernet Link network device via the NCID WC gateway

https://ncid.sourceforge.io/dist.html
https://ncid.sourceforge.io/man/ncid.1.html

an Android smartphone via the NCID Remote Notifier (RN) gateway

Set the country code to format the telephone number

You need to set the country code for your country from the country code list. Edit ncid.conf and uncomment
one of the following lines. No need to uncomment the default but you need to replace <CountryCode> with
your country code:

 # set country = "US" # Default: country is United States
 # set country = "ZZ" # No country code for country
 # set country = "<CountryCode>" # use your country code

Using a modem connected to a Unix computer

Most modern modems support Caller ID but to determine if yours does follow the steps below and then refer
to Modem Caller ID Test.

The server needs to know which port the modem is on. The default port is different depending on the
Operating System:

 Unknown Operating System distribution: /dev/modem

 Fedora, Redhat, Debian, raspios, Ubuntu: /dev/ttyACM0
 FreeBSD: /dev/cuaU0
 Mac OS X: /dev/cu.usbmodem24680241
 Cygwin: /dev/com1

If the default modem port is incorrect, you need to enter the correct port by editing ncidd.conf and either
uncomment one of these lines, or add a line with the correct port:

 # set ttyport = /dev/cu.modem # default Mac OS X internal modem
 # set ttyport = /dev/cu.usbmodem24680241 # Mac OS X USB modem
 # set ttyport = /dev/ttyS0 # Linux Serial Port 0
 # set ttyport = /dev/ttyACM0 # Linux USB modem 0

If you wish to use the internal hangup feature, you need to uncomment one of these lines if not using the
default:

 # set hangup = 0 # Default: do not terminate a call
 # set hangup = 1 # terminate the call
 # set hangup = 2 # generate FAX tones, then terminate the call
 # set hangup = 3 # play an announcement then terminate the call

If you wish to use the external hangup feature, you need to uncomment one of these lines if not using the
default:

 # hupmode = 0 # Default: do not execute the hangup extension
 # hupmode = 1 # terminate the call
 # hupmode = 2 # generate FAX tones, then terminate the call
 # hupmode = 3 # play an announcement then terminate the call

After modifying ncidd.conf, start ncidd. If ncidd is already running, it must be restarted.

https://en.m.wikipedia.org/wiki/ISO_3166-1_alpha-2

Using a serial NetCallerID device connected to a Unix computer

The serial NetCallerID (on the Wayback Machine) device is no longer manufactured by Ugotcall, but you can
sometimes find it on eBay.

Even though it supports Caller ID, the NetCallerID device is not a modem and it does not support the NCID
hangup feature. Start by hooking it up to a serial port and making the changes above. Once that is
completed, make these additional changes to ncidd.conf:

Uncomment this line:

 # set cidinput = 1

Leave all hangup and hupmode set lines commented, for example:

 # set hangup = 1

After modifying ncidd.conf, start ncidd. If ncidd is already running, it must be restarted.

Using the XDMF gateway

You would use the xdmf2ncid gateway if you are using the CTI Comet USB device or the Holtek HT9032D
based PSTN Caller ID module connected to a Linux based machine.

We have a complete section devoted to the XDMF gateway. See xdmf2ncid setup in the Gateways topic for
more information.

Using a Caller ID modem on a Windows computer via the NCID YAC gateway

You would use the YAC gateway if you are using a YAC server on a Windows computer running Microsoft
Windows 98 or later.

We have a complete section devoted to the YAC gateway. See yac2ncid setup in the Gateways topic for more
information.

Using the SIP Gateway

You would use the sip2ncid gateway if your VoIP phone is using SIP.

We have a complete section devoted to the SIP gateway. See sip2ncid setup in the Gateways topic for more
information.

Using the Whozz Calling (WC) gateway

You would use the wc2ncid gateway if you are using a Whozz Calling Ethernet Link device. Serial Whozz
Calling units are not currently supported.

We have a complete section devoted to the WC gateway. See wc2ncid setup in the Gateways topic for more
information.

Using the Android smartphone Remote Notifier (RN) gateway

You would use the rn2ncid gateway if you are using an Android smartphone.

https://web.archive.org/web/20111105115917/https://bedford.nyws.com/BI.asp?Page=CBG/BI/Feb2002/eye.htm#2

We have a complete section devoted to the RN gateway. See rn2ncid setup in the Gateways topic document
for more information.

Configure the ncid client

Normally the client does not need to be configured, but you should review ncid.conf to see if you want to change
the defaults for displaying the number format, displaying the date format and ring options if using an output
module. There are other changes you can also make.

After making any changes to ncid.conf, start the ncid client.

IMPORTANT: The ncidd server and any needed gateways should already be running.

Configure call log rotation

The /etc/ncid/ncidrotate.conf file controls how or if the call log is rotated:

Set RotateOff=0 and Lines2keep=0 to backup and then empty the call log each month. This is the
default and is required for the yearly call log.

Set RotateOff=1 to let the call log keep growing until the operating system decides it is too large.

Set Lines2keep=<NUMBER> to backup and then keep NUMBER of lines in the call log at the start of the
month.

The /etc/ncid/rotatebysize.conf file allows the call log to grow to a minimum size before it is rotated:

Set minsize=1 to rotate the call log monthly. This is the default and is required for the yearly call log.

Set minsize=<NUMBER> to grow the call log to NUMBER before rotation.

Review Log Files for more information on log files.

Configure yearly call log

The yearly crontab file is built each month by ncid-yearlog. It is designed to be run by crontab on the first of
each month. It creates the $HOME/ncid/log directory the first time it is run. On the first of any month, it creates

 $HOME/ncid/log/cidcall-<year>

and continues to add months until the end of the year.

You need to add the crontab line in REQUIREMENTS by creating or modifying a crontab file using:

crontab -e

IMPORTANT:

The ncid-yearlog script should only be run once on the first of any month.
If it is run on any day other than the first, it will do nothing.

REQUIREMENTS:

logrotate installed and used by the operating system

ncidrotate.conf must have Lines2keep=0 (default)

rotatebysize.conf must have minsize 1 (default)

user crontab:

 11 5 1 * * test -x bin/ncid-yearlog && bin/ncid-yearlog

NCID Startup

At this point you should have NCID functional. The INSTALL section for your operating system explains how to
make sure NCID is working properly.

The INSTALL section also explains how to start NCID at boot and how to manually start the server, gateways and
client.

If you are having any problems you can ask for assistance in the NCID Help or Open Discussion forums on
SourceForge.

Installation

Table of Contents

Description

Description

NCID supports the operating systems indicated here. These are install instructions for each of the operating
systems. There is also a generic install with compile instructions.

INSTALL (generic)
INSTALL-DEB (Debian, raspios or Ubuntu)
INSTALL-Cygwin
INSTALL-Fedora
INSTALL-FreeBSD
INSTALL-Mac
INSTALL-Redhat
INSTALL-Win

Review the INSTALL for your Operating System.

Generic INSTALL and Overview

If you're using a gateway, review the appropriate section in Gateways.

Table of Contents

Sections

LAYOUT:
COMPILE:
INSTALL:
TEST USING a Modem:

https://sourceforge.io/p/ncid/discussion/275237/
https://sourceforge.net/p/ncid/discussion/275236/

TEST USING a Device (like the NetCallerID box):
TEST USING a Gateway:

LAYOUT:

Programs, config files, modems, devices and log files

The programs go into $prefix/bin and $prefix/sbin .
The config file goes into $prefix2/etc .

The modem device is expected in $prefix3/dev .
The LOG file is expected in $prefix3/var/log .
The man pages go into $MAN which is $prefix/share/man .
The Makefile targets are determined by the defaults used
To view the target list with the prefix settings, type: make usage

OS that uses systemd service files during boot

The service files go into $prefix/usr/lib/systemd/system .

RPM based OS (Fedora, Redhat and CentOS) that uses init files during boot

The init scripts go into $prefix2/etc/rc.d/init.d .

Debian based OS (Debian, raspios on Raspberry Pi and Ubuntu) that uses init files during boot

The init scripts go into $prefix2/etc/init.d .

FreeBSD uses rc files during boot

The rc scripts go into $prefix2/etc/rc.d .

Macintosh OSX

The plist scripts go into $(prefix3)/Library/LaunchDaemons .

COMPILE:

Requirements

gmake (GNU make)
gcc, g++ and c++ compilers
libpcap and header files are needed for

sip2ncid

libpcre2 and header files are needed for

cidupdate

ncidd

ncidnumberinfo

libhidapi and header files are needed for

artech2ncid

cideasy2ncid

libphonenumber and header files are needed for

cidupdate

ncidd

ncidnumberinfo

protobuf and header files are needed for

cidupdate

ncidd

ncidnumberinfo

libicu and header files are needed for

cidupdate

ncidd

ncidnumberinfo

python3-pytz, python3-phonenumbers, and python3-dialog are needed for

phonetz , us_number_info , message_dialog - ncid client plugins

python3-phonenumbers is needed for

us_number_info - used by ncid

tcl is needed for

ncid non-graphical client and all output modules

tk is needed for

ncid GUI client

bwidget is needed for

ncid GUI client

Perl module Config::Simple is needed for

email2ncid.pl

obi2ncid

rn2ncid

wc2ncid

wct

xdmf2ncid

Perl module Data::HexDump is needed for

wc2ncid

wct

xdmf2ncid

Notes

The Makefiles require GNU make.

All of the supported OS distributions should have libpcap in their repositories. If it's missing,
obtain it from TCPDUMP & LIBPCAP.

Each supported OS distribution can have a different package manager, and the package names
can also be different. See Installation and look for an INSTALL-<name> appropriate for your OS.

For the required Perl modules, if they are available for installation using the OS distribution
package manager, do so. This results in the best experience in terms of updates and security fixes.
However, if they are not available, they can be installed using Perl's native package manager called
CPAN. There are a few different ways that CPAN might have been configured as to how it handles
root or sudo access, and generally it is safe to assume it was configured for the simplest usage.

If you only need to install one of the packages:

 cpan Config::Simple

or

 cpan Data::HexDump

You can combine them on one line if you need both:

 cpan Config::Simple Data::HexDump

Compile to your desired directory structure

See the top of the Makefile for more information on targets.

To compile programs and config files for /usr/local:

 make local

To compile programs for /usr and the config file for /etc:

 make package

INSTALL:

https://www.tcpdump.org/

See the top of the Makefile for more information on targets.

To install in /usr/local (man pages go into /usr/local/share/man):

 sudo make install

To install in /usr/local (man pages go into /usr/local/man):

 sudo make install MAN=/usr/local/man

To install programs in /usr : config file in /etc ,
and man pages in /usr/share/man :

 sudo make package-install

or

 sudo make install prefix=/usr prefix2=

TEST USING a Modem:

Start in this order (you may need sudo ncidd to access the modem):

 ncidd
 ncid

Call yourself.

If you have problems, start ncidd in debug mode:

 ncidd -D

To get more information, add the verbose flag:

 ncidd -Dv3

To also look at the alias, blacklist and whitelist structure:

 ncidd -Dv9

The last three lines will be similar to:

 Network Port: 3333

 Wrote pid 20996 in pidfile: /var/run/ncidd.pid
 End of startup: 04/01/2016 20:28:06

If ncidd aborts when you call yourself with something like:

 Modem set for CallerID.
 Modem Error Condition. (Phone rang here)
 /dev/ttyS1: No such file or directory

You need to set ncidd to ignore modem signals.

Uncomment the following line in ncidd.conf :

 # set ttyclocal = 1

You should see the Caller ID lines between the first and second RING.

If Caller ID is not received from the modem and if gencid is not set you will only see RING for each ring.

If gencid is set (the default), you will get a CID at RING number 2:

 07/13/2010 15:21 RING No Caller ID

This indicates one of three problems:

The modem is not set for Caller ID.
The modem does not support Caller ID.
The Telco is not providing Caller ID.

Once you solve the problems, restart ncidd normally.

TEST USING a Device (like the NetCallerID box):

Start in this order:

 ncidd
 ncid

Call yourself.

If you have problems, start ncidd in debug mode:

 ncidd -D

To get more information, add the verbose flag:

 ncidd -Dv3

To also look at the alias, blacklist and whitelist structure:

 ncidd -Dv9

The last three lines will be similar to:

 Network Port: 3333
 Wrote pid 20996 in pidfile: /var/run/ncidd.pid
 End of startup: 04/01/2016 20:28:06

Once you solve any problems, restart ncidd normally.

TEST USING a Gateway:

You may need to configure options. Review the appropriate section in Gateways.

Start in this order:

 ncidd

 <name of gateway>
 ncid

For example:

 ncidd
 sip2ncid
 ncid

Call yourself.

If you have problems, start ncidd in debug mode:

 ncidd -D

To get more information, add the verbose flag:

 ncidd -Dv3

To also look at the alias, blacklist and whitelist structure:

 ncidd -Dv9

The last three lines will be similar to:

 Network Port: 3333
 Wrote pid 20996 in pidfile: /var/run/ncidd.pid
 End of startup: 04/01/2016 20:28:06

Once you solve any problems, restart ncidd normally.

Cygwin Package Install

NCID version 1.12 and later do not support Cygwin.

NCID version 1.12 and later requires libphonenumber which is not part of the Cygwin
distribution.

The Cygwin information below is provided as historical reference.

If NCID does not work, see INSTALL for some simple tests.

If you're using a gateway, review the appropriate section in Gateways.

Table of Contents

Sections:

NOTES
INSTALL
CONFIGURE
START
REBASE
RUN AS A QUASI-SERVICE

NOTES:

The NCID server cannot directly control a modem under Cygwin. Use the supplied yac2ncid gateway to control a
modem under Windows.

The sip2ncid gateway is not part of the NCID install package. It uses a network library not supported by Cygwin.

The server must be configured in ncidd.conf for either:

cidinput = 1 # Caller ID from a serial or USB device and optional gateways

cidinput = 2 # Caller ID from gateways with modem support

cidinput = 3 # Caller ID from gateways without modem support

In a normal Unix installation, the ncid client script will automatically run in GUI mode under X-Windows.
However, X-Windows is not available for Cygwin. Two ncid client options are available:

Use the ncid client script in character mode under Cygwin:

 ncid --no-gui &

This also allows the use of output modules:

 ncid --no-gui <module> &

Download the ncid client Windows installer from SourceForge:

 ncid-VERSION-client_windows_setup.exe

This does run in GUI mode but does not allow the use of output modules.

INSTALL:

Install Cygwin from https://cygwin.com/

download setup-x86.exe
run setup-x86.exe
select cygwin download site (we used US site https://cygwin.osuosl.org)
add the following to the default install setup

Devel/gcc-core
Devel gcc-g++
Devel/make
Editors/vim
Interpreters/perl
Interpreters/perl_pods
Interpreters/tcl
Net/openssh
text/pcre2
Libs/libpcre2-devel
Libs/hidapi-devel

it is strongly recommended you enable cut and paste in the Cygwin window

Left click on the icon in upper left
Select Properties
Check QuickEdit Mode in Edit Options

if compiling from source:

Download WinPcap Developer's Pack from https://www.winpcap.org/devel.htm
Unzip WpdPack_<version>.zip
Rename to WpdPack and move it to \

Install or upgrade NCID:

The NCID package normally installs in /usr/local :

Install or upgrade using the tar archive, if available:

Extracting the tar file will REPLACE the contents of all of the NCID configuration files. Be sure to
back them up first. This includes all files in /usr/local/etc/ncid/ .

Copy ncid-VERSION-cygwin.tgz to your Cygwin home directory.

Extract:

 sudo tar -xzvf ncid-VERSION-cygwin.tgz -C /

https://cygwin.com/
https://cygwin.osuosl.org/
https://www.winpcap.org/devel.htm

Example:

 sudo tar -xzvf ncid-1.12-cygwin.tgz -C /

Install or upgrade using the install script, if available.

For an upgrade, the install script will preserve existing configurations and new ones installed
will have *.new as the extension.

Copy ncid-VERSION-cygwin_install.sh to your Cygwin home directory.
Run install script: sudo sh ncid-VERSION-cygwin_install.sh

Example:

 sudo sh ncid-1.12-cygwin_install.sh

If there is no binary package, you need to compile from source:

Copy ncid-VERSION-src.tar.gz to your Cygwin home directory.

Extract and compile. It will be installed to /usr/local (see top of Makefile):

 tar -xzvf ncid-VERSION-src.tar.gz

 cd ncid

 make cygwin

 sudo make cygwin-install

If your phone system is VoIP and you want to use sip2ncid:

nothing else to do

If you want to use a modem, you need YAC

download and install YAC (on the Wayback Machine)
configure the YAC server for a listener at localhost (127.0.0.1)

CONFIGURE:

The Makefile configures ncidd.conf for Cygwin, but you may want to change some of the defaults.

You need to configure sip2ncid to use the Network Interface. To find out the network interface name, you need to
use the "-l" option to sip2ncid. You should see your Network interface names listed. Select the active one and use
it with the "-i" option to sip2ncid.

START:

If this is your first time, you should first do the Test Using a Gateway and specify sip2ncid or yac2ncid .

https://web.archive.org/web/20160824011700/https://www.sunflowerhead.com/software/yac/

Once testing is finished, run the processes in background:

 ncidd &
 <name of gateway> &
 ncid --no-gui &

Call yourself and see if it works.

REBASE:

One of the idiosyncrasies of Cygwin is the need to rebase the dll's (set a base dll load address) so they don't
conflict and create forking errors. The easiest way to do this is documented at Rebaseall.

Just start an ash or dash prompt from \\cygwin\\bin and then type:

 rebaseall -v
 exit

RUN AS A QUASI-SERVICE:

Don't do this process until you have ncidd and sip2ncid or other processes running properly. Once you
have things setup though, you can set ncidd and sip2ncid to (sort of) run as a service in Windows. I only
say "sort of" because it's not technically a service, but is called from another Cygwin component that is
a service.

Re-run the setup.exe that you used to install Cygwin and install the cygrunsrv package. It's under
Admin.

Go to a cygwin command line and type the following to install ncidd as a service:

 cygrunsrv -I ncidd -n -p /usr/local/bin/ncidd \
 -f "Network CallerID daemon(ncidd)" -a -D

Explaining these parameters:

 -I indicates install

 -n indicates that the service never exits by itself (I don't

 recall why this has to be set, but it doesn't work otherwise)

 -p /usr/local/bin/ncidd:
 Application path which is run as a service.

 -f "Network CallerID daemon (ncidd)":
 Optional string which contains the service description

 (the desc you see in the Services listing)

 -a -D: passes the parameter "-D" to the ncidd program so it
 runs in debug mode. This keeps ncidd running in the
 "foreground" of the cygrunsrv process.

https://cygwin.wikia.com/wiki/Rebaseall

Likewise, to remove the ncidd service:

 cygrunsrv -R ncidd

To install sip2ncid to run in the background, the command line is similar:

 cygrunsrv -I sip2ncid -n -p /usr/local/bin/sip2ncid -y ncidd \
 -a '-i "/Device/NPF_{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}" \
 -D' -f "Service picks network SIP packets and sends to ncidd" \
 --termsig KILL

Explaining these parameters:

 -I indicates install

 -n indicates that the service never exits by itself (I don't

 recall why this has to be set, but it doesn't work otherwise)

 -p /usr/local/bin/sip2ncid: Application path which is run as
 a service.

 -y ncidd: adds a service dependency with the ncidd service so
 that the ncidd service gets started automatically when you

 start sip2ncid

 -a '-i "/Device/NPF_{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}" -D':
 note the single and double quotes in this section. You need to
 replace XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX in the above
 with NETWORK_INTERFACE from way above. To be clear, you want to
 replace /Device/NPF_{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

 with NETWORK_INTERFACE from way above.

 -f "Service to pick SIP packets from network and send to ncidd":
 Optional string which contains the service description
 (the desc you see in the Services listing)

 --termsig KILL: termination signal to send. If you don't include

 this the service doesn't always get stopped.

Likewise, to remove the sip2ncid service:

 cygrunsrv -R sip2ncid

To install ncid-notify to run in the background, the command line is similar: cygrunsrv -I ncid-notify -p
/bin/sh.exe -a \
'-c "/usr/local/bin/ncid --no-gui --module ncid-notify"'
-f "Service to use notify service to send ncid messages to iPad"

Explaining these parameters:

 -I indicates install

 -p /bin/sh.exe: Application path to run, which in this case is
 just sh.exe because ncid-notify is a shell script

 -a '-c "/usr/local/bin/ncid --no-gui --module ncid-notify"'
 these are the parameters that get sent to sh.exe:

 -c "/usr/local/bin/ncid: this is the path to the ncid script

 --no-gui: tells ncid not to run as gui

 --module ncid-notify: tells ncid to pass data to "ncid-notify"

 -f "Service to use notify service to send ncid messages to iPad":
 Optional string which contains the service description

 (the desc you see in the Services listing)

 -y ncidd: you COULD also add this line to add a service dependency
 with the ncidd service so that the ncidd service gets started
 automatically when you start ncid-notify. I don't do this,
 because strictly speaking, you could be running ncidd on a
 different computer

Likewise, to remove the ncid-notify service:

 cygrunsrv -R ncid-notify

DEB Package Install for Debian, raspios and Ubuntu

May be valid for other DEB Operating Systems

If NCID does not work, see INSTALL for some simple tests.

If you're using a gateway, review the appropriate section in Gateways.

Table of Contents

Sections:

COMPILE/INSTALL from Source:
INSTALL/UPGRADE from DEB Package:
CONFIGURE:
FIRST STARTUP:
START/STOP/RESTART/RELOAD/STATUS:
AUTOSTART:
LIST PACKAGE FILES:
PACKAGE REMOVAL:
KNOWN ISSUE - MODEMMANAGER MAY HANG NCID AT BOOT TIME:

COMPILE/INSTALL from Source:

It's very important to update the latest package info before continuing. Don't skip these two steps!
(NOTE: The apt command is preferred over apt-get and apt-cache.)

 sudo apt update
 sudo apt upgrade

If any packages were listed as "kept back" and "not upgraded", do:

 sudo apt dist-upgrade

The following packages are required:

 sudo apt install build-essential fakeroot
 sudo apt install libpcre2-dev libhidapi-dev
 sudo apt install libphonenumber-dev libicu-dev
 sudo apt install libpcap-dev zstd rename
 sudo apt install libconfig-simple-perl libdata-hexdump-perl

The following python3 packages are required:

sudo apt install python3-pytz python3-phonenumbers python3-dialog

These packages are required to run the ncid GUI:
(pkg tk also installs tcl)

sudo apt install tk bwidget

The Perl package required for the email2ncid, obi2ncid, rn2ncid, wc2ncid, wct, and xdmf2ncid
gateways:

sudo apt install libconfig-simple-perl

This Perl additional package is required to run wc2ncid, wct and xdmf2ncid:

sudo apt install libdata-hexdumper-perl

If the above Perl packages are not in the repository, you can try installing with the native Perl package
manager called cpan:

 cpan install Config::Simple
 cpan install Data::HexDump

Download the source from SourceForge:

 wget https://sourceforge.net/projects/ncid\
 /files/ncid/<version>/ncid-<version>-src.tar.gz

Example:

 wget https://sourceforge.net/projects/ncid\
 /files/ncid/1.12/ncid-1.12-src.tar.gz

Copy ncid-<version>-src.tar.gz to any convenient directory, then type the following, where
<os> is debian, raspbian or ubuntu:

 tar -xzvf ncid-<version>-src.tar.gz

 cd ncid

 make <os>

 sudo make <os>-install

INSTALL/UPGRADE from DEB Package:

NCID requires the server and client DEB packages to function. The server is required on one computer or device,
but the client can be installed on as many computers as needed.

If available, the latest NCID can be installed from a Debian, raspios or Ubuntu repository using apt.

If you cannot find a repository that contains NCID, or if the latest packages are not available, you can download
them from SourceForge and install them using gdebi or dpkg.

In the sections below:

<version> represents the NCID version number (e.g., 1.12)
<arch> is the architecture

use <armhf> for raspios 32 bit processors
use <amd64> for 64 bit processors

<module> would be a module name like: kpopup, mythtv, samba

It's very important to update the latest package info before continuing. Don't skip these two steps! (NOTE: The
apt command is preferred over apt-get and apt-cache.)

 sudo apt update
 sudo apt upgrade

Install NCID from a repository

List the available packages:

 sudo apt search ncid

Install the server package (required):

 sudo apt install ncid_<version>-1_<arch>.deb

Install the client package (optional; includes most of the output modules):

 sudo apt install ncid-client_<version>-1_all.deb

Install any additional module packages wanted (optional):

 sudo apt install ncid-<module>_<version>-1_all.deb

Install the gateways package if using a gateway instead of a modem (optional):

 sudo apt install ncid-gateways_<version>-1_<arch>.deb

Install NCID from DEB packages at SourceForge

If the latest packages are not available at a repository, download them SourceForge.

Assuming the latest version is 1.12 and you're installing for a 64 bit processor, you would do the
following:

Download the server package (required)

 wget https://sourceforge.net/projects/ncid\
 /files/ncid/1.12/ncid_1.12-1_amd64.deb

If using the client, download ncid-client (optional; includes most of the output modules):

 wget https://sourceforge.net/projects/ncid\
 /files/ncid/1.12/ncid-client_1.12-1_all.deb

Download any additional output modules (optional):

 wget https://sourceforge.net/projects/ncid\
 /files/ncid/1.12/ncid-<module>_1.12-1_all.deb

If using a gateway instead of a modem, download ncid-gateways (optional):

 wget https://sourceforge.net/projects/ncid\

 /files/ncid/1.12/ncid-gateways_1.12-1_amd64.deb

You can use apt, gdebi or dpkg to install the downloaded NCID packages and dependent packages.

Method 1: Install or Upgrade the packages using apt

Install the server (required):

 sudo apt install ./ncid_<version>-1_<arch>.deb
 (note: the dot-slash is required here)

Install the client (optional; includes most of the output modules):

 sudo apt install ./ncid-client_<version>-1_all.deb

Install any additional modules (optional):

 sudo apt install ./ncid-<module>_<version>-1_all.deb

Install any gateways (optional):

 sudo apt install ./ncid-gateways_<version>-1_<arch>.deb

Method 2: Install or Upgrade the packages using gdebi-gtk (GUI):

If needed, use the menu item "Add/Remove..." to install the GDebi Package Installer.

 Using the file viewer:

 - Open the file viewer to view the NCID DEB packages
 - Select the DEB packages

 - Double-click selections or right-click selections and select

"Open with GDebi Package installer"

Method 3: Install or Upgrade the packages using gdebi (command line):

Install gdebi if needed:

 sudo apt install gdebi

Install the server (required):

 sudo gdebi ncid-<version>-1_<arch>.deb

Install the client (optional; includes most of the output modules):

 sudo gdebi ncid-client-<version>-1_all.deb

Install any additional modules (optional):

 sudo gdebi ncid-<module>-<version>-1_all.deb

Install any gateways (optional):

 sudo gdebi ncid-gateways_<version>-1_<arch>.deb

Method 4: Install or Upgrade the packages using dpkg (command line):

Install the server (required):

 sudo dpkg -i ncid-<version>_<arch>.deb

Install the client (optional; includes most of the output modules):

 sudo dpkg -i ncid-client-<version>-1_all.deb

Install any additional modules (optional):

 sudo dpkg -i ncid-<module>-<version>-1_all.deb

Install any gateways (optional):

 sudo dpkg -i ncid-gateways_<version>-1_<arch>.deb

Force install of all dependencies:

 sudo apt-get install -f

CONFIGURE:

The ncidd.conf file is used to configure ncidd. A typical installation places the ncid configuration files in
/etc/ncid/.

The default modem port in ncidd is /dev/ttyACM0. If you need to change it, set your modem port in
ncidd.conf. This assumes serial port 0:

 set ttyport = /dev/ttyS0

If you are using a Gateway to get the Caller ID instead of a local modem, you need to set cidinput:

 set cidinput = 1 # Caller ID from a serial or USB device and optional
gateways
 set cidinput = 2 # Caller ID from gateways with modem support

 set cidinput = 3 # Caller ID from gateways without modem support

If you are using a local modem with or without a Gateway:

 set cidinput = 0 (this is the default)

FIRST STARTUP:

If you are running the server and client on the same computer and using a modem:

 sudo systemctl start ncidd

 ncid &

If you are running the server and using a gateway:

 sudo systemctl start ncidd <name of gateway>

 ncid &

Call yourself and see if it works, if not:

stop the server and gateway:

 sudo systemctl stop mcid wc2ncid

and continue reading the test sections.

If everything is OK, enable the NCID server, gateways and client modules you are using to autostart at
boot. There are rc.init scripts for starting ncid with output modules, for example: ncid-page, ncid-
kpopup, etc.

NOTE:

The ncid GUI client must be started after login, not boot. There is no ncid.init script to start or stop it.

START/STOP/RESTART/RELOAD/STATUS:

Use the systemctl command to control any of the daemons. The systemctl commands are: start, stop, restart,
reload and status. The client using an output module can also be started using the ncid-<module> instead of
ncid. All output modules can be run at the same time.

Here are some examples:

Start the NCID server:

 sudo systemctl start ncidd

Stop the sip2ncid server:

 sudo systemctl stop sip2ncid

Restart the sip2ncid server:

 sudo systemctl restart sip2ncid

Reload the server alias file:

 sudo systemctl reload ncidd

Start ncid with ncid-page:

 sudo systemctl start ncid-page

Status of ncid with ncid-speak:

 sudo systemctl status ncid-speak

Review the man page: man systemctl

AUTOSTART:

Use the systemctl command to enable/disable the service at boot.

Here are some examples:

Start ncidd at boot:

 sudo systemctl enable ncidd

Start ncid-page at boot:

 sudo systemctl enable ncid-page

Disable ncidd startup at boot:

 sudo systemctl disable ncidd

Review the man page: man systemctl

See also this section about a known issue where ModemManager may hang NCID at boot time.

LIST PACKAGE FILES:

To see all the files the package installed onto your system:

 dpkg-query -L <package_name>

To see the files a .deb file will install

 dpkg-deb -c <package_name.deb>

To work directly with package names rather than package files, you can use apt-file.
It lists contents for packages in your already-configured Apt repositories.
It is irrelevant whether any particular package is or is not installed.

You may need to install the apt-file package first:

 sudo apt-file update
 apt-file list package_name

After installing apt-file:

 apt-file list <package_name>

PACKAGE REMOVAL:

Use apt to remove any NCID package installed.

For example, to use apt to remove the ncid package:

Normal removal without removing configuration files and dependencies:

 sudo apt remove ncid

Complete removal including configuration files:

 sudo apt purge ncid

Remove ncid dependencies no longer needed:

 sudo apt autoremove

Review the man page: man apt

PACKAGE Dependencies:

Three ways to check package dependencies:

apt show <path_to_uninstalled_package>
apt-cache depends <Installed_package>
dpkg -I <path_to_uninstalled_package>

KNOWN ISSUE - MODEMMANAGER MAY HANG NCID AT BOOT TIME:

Configurations known to have the issue:

You are running Ubuntu 14.xx or later with the ModemManager installed and running.
You are running Debian 9.xx or later and the ModemManager is not installed and/or is not running.
You are running Ubuntu Mate on an Raspberry Pi model 3.
You are running Raspbian Jessie on an Raspberry Pi model 3.
It is a hardware modem mounted internally on a PCI card.
It is a USB modem.

Symptoms:

The NCID server is not sending caller ID to clients on your network.
Clients are unable to connect to the NCID server.
The NCID server log /var/log/ncidd.log indicates modem initialization did not complete and appears to
be hung. This also prevents other processes after it from starting until the NCID server is killed.
You may see very strange modem responses in the NCID server log.
The NCID server problem is fixed by manually restarting it after the Operating System boots.
The NCID server problem is fixed by manually unplugging and re-plugging in the USB modem.

Solution: If the ModemManager is installed

The ModemManager is searching for a mobile broadband (2G/3G/4G) capable devices, querying various
Serial and USB connected devices at boot time, by sending "AT+GCAP" (the AT command for a modem to
"Request Complete Capabilities List"). This can collide in terms of the devices initialization timing, with the
NCID server and the XDMF to NCID gateway.

The solution is to create the udev rules that will exclude from probing, devices used by the NCID server and
XDMF to NCID gateway.
Check out /usr/share/doc/ncid/README-udev for details.

Disabling the ModemManager should be used as a last resort, if for some reason the method of the udev
rules fails.

Issue the following commands:

 sudo systemctl disable ModemManager.service
 sudo systemctl stop ModemManager.service
 sudo systemctl status ModemManager.service

The disable line will prevent ModemManager from starting at boot.

The stop line will terminate the currently running instance of ModemManager.

The status lines should look like this:

 ● ModemManager.service - Modem Manager
 Loaded: loaded (/usr/lib/systemd/system/ModemManager.service; disabled;
vendor preset: enabled)
 Active: inactive (dead)

In the cases where the Operating System has no systemctl available, disable ModemManager completely by
removing its execute permissions, with the following command:

 sudo chmod ugo-x /usr/sbin/ModemManager

Fedora RPM Package Install

If NCID does not work, see INSTALL for some simple tests.

If you're using a gateway, review the appropriate section in Gateways.

Table of Contents

Sections:

COMPILE/INSTALL from Source:
INSTALL/UPGRADE from RPM Package:
CONFIGURE:
FIRST STARTUP:
START/STOP/RESTART/RELOAD/STATUS:
AUTOSTART:

COMPILE/INSTALL from Source:

Compile using the ncid-<NCID version>-src.tar.gz tar archive:

The following packages are required:

 sudo dnf install libpcap-devel pcre2-devel hidapi-devel tcl

 sudo dnf install libphonenumber-devel libicu-devel
 sudo dnf install protobuf-devel

These packages are required to run the ncid GUI:
(note that package tk also installs package tcl)

 sudo dnf install tk bwidget

The following Python3 packages are required:

 sudo dnf install python3-pytz python3-phonenumbers python3-dialog

This Perl package is required to run email2ncid, obi2ncid, rn2ncid, wc2ncid, wct, and xdmf2ncid:

 sudo dnf install perl-Config-Simple

This additional Perl package is required to run wc2ncid, wct and xdmf2ncid:

 sudo dnf install perl-Data-HexDump

If the above Perl packages are not in the repository, you can try installing with the native Perl package
manager called cpan:

 cpan install Config::Simple
 cpan install Data::HexDump

Finally, compile and install:

 make fedora

 sudo make fedora-install

Rebuild the rpm packages using ncid-<NCID version>.fc<OS version>.src.rpm

Install the required packages

 dnf builddep ncid-<NCID version>.fc<OS version>.src.rpm

Rebuild the RPM packages

 rpm --rebuild ncid-<NCID version>.fc<OS version>.src.rpm

INSTALL/UPGRADE from RPM Package:

NCID requires the server and client RPM packages to function. The server is required on one computer or device,
but the client can be installed on as many computers as needed.

The client has most of the output modules in its RPM package, but there are optional output modules in their
own RPM packages.

Download the server and client RPM packages using dnf from the Fedora repositories. You can also download
any optional output modules you want.

List the available packages:

 sudo dnf list ncid*

The most recent versions may be here:

 sudo dnf install fedora-release-rawhide
 sudo dnf --enablerepo=rawhide list ncid*

Install the server package (required):

 sudo dnf install ncid-< rpm package >

Install the client package (optional)

 sudo dnf install ncid-client-< rpm package >

Install the gateways package if using a gateway instead of a modem (optional):

 sudo dnf install ncid-gateways-< rpm package >

Install any optional module packages wanted (most modules are included with the client package):

 sudo dnf install ncid-< module rpm package >

If this is an upgrade and you changed any NCID configuration files, RPM creates new files with either .rpmnew
(the new default config file), or .rpmsave (your old config file backed up). The rpmconf tool simplifies updating
the configuration files from .rpmnew from .rpmsave.

Install rpmconf, if needed:

 sudo dnf install rpmconf

Update all configuration files that have .rpmnew or .rpmsave files:

 sudo rpmconf -a

If the current release is not in the Fedora repositories, download the RPM packages from
https://sourceforge.net/projects/ncid/

Download server, gateways and client RPM Packages from SourceForge:

 ncid RPM Package (server - required)
 ncid-client RPM Package (client & default output modules - optional)
 ncid-gateways RPM Package (gateways - optional)

Download any optional output modules wanted from SourceForge:

 ncid-MODULE RPM Package (optional client output modules)

Install or Upgrade the packages:

 Using the file viewer:

https://sourceforge.net/projects/ncid/

 - Open the file viewer to view the NCID RPM packages
 - Select the RPM packages
 - Right click selections and select "Open with Package installer"

 Using dnf:

 sudo dnf install ncid*.rpm

CONFIGURE:

The ncidd.conf file is used to configure ncidd.

The default modem port in ncidd is /dev/ACM0. If you need to change it, set your modem port in
ncidd.conf. This assumes serial port 0:

 set ttyport = /dev/ttyS0

If you are using a Gateway to get the Caller ID instead of a local modem, you need to set cidinput:

 set cidinput = 1 # Caller ID from a serial or USB device and optional
gateways
 set cidinput = 2 # Caller ID from gateways with modem support

 set cidinput = 3 # Caller ID from gateways without modem support

If you are using a local modem with or without a Gateway:

 set cidinput = 0 (this is the default)

FIRST STARTUP:

If you are running the server and client on the same computer and using a modem:

 sudo systemctl start ncidd

 ncid &

If you are running the server and using a gateway:

 sudo systemctl start ncidd <name of gateway>

 ncid &

Call yourself and see if it works, if not,

stop the gateway and server:

 sudo systemctl stop <name of gateway> ncidd

and continue reading the test sections.

If everything is OK, enable the NCID server, gateways and client modules you are using to autostart at
boot.

For example, to start ncidd and sip2ncid at boot:

 sudo systemctl enable ncidd sip2ncid

The GUI ncid client must be started after login, not boot.

NOTE:

The ncid client normally starts in the GUI mode and there is no ncid.service script to start or stop it.
There are service scripts for starting ncid with output modules, for example: ncid-page, ncid-kpopup,
etc.

The ncid client can be started automatically from the Auto Start item in the File menu.

START/STOP/RESTART/RELOAD/STATUS:

Use the 'systemctl' command to control any of the daemons. The service commands are: start, stop, restart,
reload, reload-or-restart and status. The client can also be started using the output module name instead of
ncid. All output modules can be run at the same time.

Here are some examples:

Start the NCID server:

 sudo systemctl start ncidd.service

Stop the sip2ncid server:

 sudo systemctl stop sip2ncid.service

Reload the server alias file:

 sudo systemctl reload-or-restart ncidd.service

Restart ncid using ncid-page:

 sudo systemctl start ncid-page.service

Get the status of ncid using ncid-speak:

 sudo systemctl status ncid-speak.service

Review the man page: man systemctl

AUTOSTART:

Use the 'systemctl' command to enable/disable a service to start at boot.

Here are some examples:

Autostart ncidd at boot:

 sudo systemctl enable ncidd

Autostart ncidd and sip2ncid at boot:

 sudo systemctl enable ncidd sip2ncid

Disable ncid-speak from starting at boot:

 sudo systemctl disable ncid-speak

Review the man page: man systemctl

FreeBSD Install

If NCID does not work, see INSTALL for some simple tests.

If you're using a gateway, review the appropriate section in Gateways.

Table of Contents

Sections:

COMPILE:
INSTALL:
CONFIGURE:
STARTUP:
START/STOP/STATUS:
AUTOSTART:
TRIMMING LOG FILES:
GMAKE NOTE:

COMPILE:

See INSTALL.

INSTALL:

The NCID package installs in /usr/local.

Requirements

All packages can be installed from repositories or compiled from ports. Instructions assume the user root and
use pkg to install from repositories. If the sudo command is installed, replace pkg with sudo pkg, if not root.

update the repository data and upgrade:

pkg update
pkg upgrade

Install sudo. The user needs to be in group wheel. A line in /usr/local/etc/sudoers needs to be
uncommented to allow users in group wheel to run as root.

pkg install sudo

The NCID Makefile requires gmake and bash. To obtain the Makefile usage: gmake

pkg install bash gmake

X-windows and Gnome (NCID default GUI environment)

pkg install xorg urwfonts gnome3

add to /etc/rc.conf

dbus_enable="YES"
hald_enable="YES"
gdm_enable="YES"
gnome_enable="YES"

add to /etc/fstab (required by Gnome)

 proc /proc procfs rw 0 0

Compile ncid

pkg install libpcap pcre2 hidapi libphonenumber gmake gcc bwidget python3

install python39 py39-pytz py39-phonenumbers py39-dialog (or newer versions)

sudo pkg python39 py39-pytz py39-phonenumbers py39-dialog

install Perl config-simple and Data-HexDump

sudo pkg install p5-config-simple p5-Data-HexDump

install tk8.7 (tcl/tk version must be >= 8.6; pkg tk also installs tcl)

sudo pkg install tk87

make sure ncid calls tcl?.? or wish?.?

For example: tclsh8.7 and wish8.7 otherwise modify the TCLSH and WISH variables in ncid

install logrotate

pkg install logrotate

install the vim editor (or another editor of your choice)

pkg install vim

Install or upgrade using the install script as root, if available:

GNU getopt is required when using the install script. See this note.

For an upgrade, the install script will preserve existing configurations and new ones installed will have *.new
as the extension.

 Copy ncid-VERSION-freebsd_install.sh to the FreeBSD computer

 sh ncid-VERSION-freebsd_install.sh

Example:

 sh ncid-1.10-freebsd_install.sh

You will need to manually compare your current configuration files with the *.new ones and manually edit
any differences.

If there is no binary package, you need to compile the source.

Gmake is required when compiling the source. See this note.

Your existing configuration files will be preserved and new ones installed will have *.new as the extension.

 Copy ncid-VERSION-src.tar.gz to the FreeBSD computer

 tar -xzvf ncid-VERSION-src.tar.gz

 gmake freebsd (compiles for /usr/local, see top of Makefile)

 gmake freebsd-install

CONFIGURE:

The ncidd.conf file is used to configure ncidd.

The default modem port in ncidd is a USB modem at /dev/cuaU0. There may also be /dev/ttyACM0 in
addition to /dev/cuaU0.

You should set the modem in ncidd.conf, if you need to change it. Use one of cuaa0, cuaa2, cuaa3,
cuaa4 in /dev which corresponds to COM1, COM2, COM3, COM4

If you are using COM1 then you would add this line to ncidd.conf:

 set ttyport = /dev/cuaa0

If you are using a gateway instead of a local modem, you need to set cidinput:

 set cidinput = 1 # Caller ID from a serial or USB device and

optional gateways
 set cidinput = 2 # Caller ID from gateways with modem support
 set cidinput = 3 # Caller ID from gateways without modem support

If you are using a local modem with or without a gateway:

 set cidinput = 0 (this is the default)

STARTUP:

If you are running the server and client on the same computer and using a modem:

 /usr/local/etc/rc.d/ncidd onestart

 ncid &

If you are running the server and using a gateway:

 /usr/local/etc/rc.d/rc.d/ncidd onestart

 /usr/local/etc/rc.d/rc.d/<name of gateway> onestart

 ncid &

Call yourself and see if it works, if not:

stop the gateway used:

 /usr/local/etc/rc.d/rc.d/<name of gateway> onestop

stop the server:

 /usr/local/etc/rc.d/rc.d/ncidd onestop

and continue reading the test sections.

If everything is OK, enable the NCID server, gateways and client modules you are using to autostart at
boot.

NOTE:

The ncid client normally starts in the GUI mode and there is no ncid.rc script to start or stop it.

There are rc.d scripts for starting ncid with output modules, for example: ncid-page, ncid-kpopup,
etc.

START/STOP/STATUS:

The /usr/local/etc/rc.d/ncid* scripts to control any of the daemons. The rc.d commands are: start, stop,
restart, reload and status. The client can also be started using the output module name instead of ncid.
All output modules can be run at the same time.

Here are examples:

 sudo /usr/local/etc/rc.d/ncidd start
 sudo /usr/local/etc/rc.d/ncidd reload
 sudo /usr/local/etc/rc.d/sip2ncid restart
 sudo /usr/local/etc/rc.d/ncid-speak stop
 sudo /usr/local/etc/rc.d/ncid-page status

 sudo /usr/local/etc/rc.d/ncid-kpopup rcvar

If a service is not enabled, you must prefix 'one' to the commands; start becomes onestart, stop
becomes onestop and so forth.

AUTOSTART:

If you want NCID services to start automatically at boot, you need to add an enable line
/etc/rc.conf.local for each service you want started. If /etc/rc.conf.local does not exist, create it.

Here is the list of rc scripts and their enable lines:

 /usr/local/etc/rc.d/ /etc/rc.conf.local
 -------------------- ------------------
 ncidd ncidd_enable="YES"

 sip2ncid sip2ncid_enable="YES"
 yac2ncid yac2ncid_enable="YES"
 ncid-kpopup ncidkpopup_enable="YES"
 ncid-notify ncidnotify_enable="YES"
 ncid-page ncidpage_enable="YES"
 ncid-samba ncidsamba_enable="YES"
 ncid-skel ncidskel_enable="YES"

 ncid-speak ncidspeak_enable="YES"
 ncid-yac ncidyack_enable="YES"

TRIMMING LOG FILES:

FreeBSD uses newsyslog by default to trim files. To trim the cidcall.log and the ciddata.log files, add this
entry to /etc/newsyslog.conf:

 /var/log/cid*.log root:wheel 644 5 * $M1D0 GN

GMAKE NOTE:

The NCID source package requires gmake.

The NCID source package and, if available, the install script, require GNU getopt. It is installed from
/usr/ports/devel/libgnugetopt:

 cd /usr/ports/devel/gmake

 make all install

Macintosh Install

If NCID does not work, see INSTALL for some simple tests.

If you're using a gateway, review the appropriate section in Gateways.

Table of Contents

Sections:

SYSTEM REQUIREMENTS:
COMPILE/INSTALL/UPGRADE from Source:
CONFIGURE:
FIRST STARTUP:
(AUTO)START/STOP:
CHECKING DAEMON STATUS:
TRIMMING LOG FILES:

SYSTEM REQUIREMENTS:

macOS:

NCID should work on macOS 11.7 (Big Sur) and later versions. It requires an Intel 64bit processor.

Graphical User Interface (GUI):

The native macOS GUI called Aqua is not compatible with the NCID GUI client. Instead, it needs
XQuartz, a macOS specific version of X Windows (a.k.a. X11). XQuartz is installed as a separate
application and runs alongside Aqua.

In addition to XQuartz, a special version of TCL/TK is required that works with XQuartz. The steps
to install these depend on which package manager is used and are incorporated below.

Package Manager:

Pick one of the following package managers (do not install both).

Homebrew:

This is the preferred package manager because it appears to be more actively maintained,
especially for the latest versions of macOS. Check here to see if you meet the minimum system
requirements.

Click here for instructions to download and install Homebrew.

https://docs.brew.sh/Installation#macos-requirements
https://brew.sh/

As of this writing for NCID 1.14, there is a bug in the Homebrew formula to install the special
version of TCL/TK that is required to work with XQuartz: You cannot successfully install TCL/TK
if the path to the Xcode Command Line Tools (CLT) contains an embedded space. This should
only be an issue if you install the full Xcode application to a location other than the default,
which is /Applications/Xcode. To determine if this issue applies to your macOS environment,
examine the path emitted by the following command typed at a shell prompt:

 xcode-select -p

MacPorts:

You will likely use MacPorts for older versions of macOS that Homebrew no longer supports.

File /etc/paths needs to be edited to put in directories for finding MacPorts. Use sudo to make
a backup first, then edit the file with:

 sudo vi /etc/paths

so that it looks like this:

 /opt/local/libexec/gnubin

 /opt/local/bin
 /opt/local/sbin
 /usr/bin
 /bin
 /usr/sbin
 /sbin
 /usr/local/bin

 /usr/local/sbin

Click here for instructions to download and install MacPorts.

A minimum of MacPorts version 2.8.0 is required. However, as of this writing for NCID 1.14,
there is a bug in version 2.8.0 and later where the hidapi package will not install header file
hidapi_darwin.h; this causes the compile to fail. This has been reported to the MacPorts
maintainers.

COMPILE/INSTALL/UPGRADE from Source:

Prerequisite:

When building NCID from source, you must compile on a case-sensitive macOS filesystem. This
requirement is ONLY for compiling NCID. Do not attempt to put other macOS applications on a
case-sensitive filesystem because they will probably not work as expected.

Use the diskutil command to determine the filesystem type. Assuming you will be installing to the
Mac's startup volume, i.e., the root filesystem, type the following:

 diskutil info / | fgrep -i "file system"

https://www.macports.org/install.php

Depending on the version of macOS, the default filesystem type is 'APFS' or 'Journaled HFS+' which
are not case-sensitive.

Look for 'Case-sensitive' in the output of the diskutil command above. If you don't see it, you can
create a small, case-sensitive disk image just so you can compile NCID. Approximately 100
megabytes are required for each version of NCID you intend to compile. A minimum 200 megabyte
disk image size is recommended.

 hdiutil create -size 200m \
 -fs "Case-sensitive HFS+" \
 -volname NCID ~/NCID.dmg

Next, mount the disk image:

 hdiutil attach ~/NCID.dmg

and change to its directory where you will place the source:

 cd /Volumes/NCID

Rebooting the Mac computer will normally unmount the disk image requiring the hdiutil attach
command to be manually run each time. You can set it up to automount by doing the following:

1. Login as the user where you want to autmount NCID.dmg.

2. From a Terminal prompt, mount the disk image:

hdiutil attach ~/NCID.dmg

3. There should now be an icon on the Desktop called NCID showing that it has been mounted.

4. Go to System Preferences->Users & Groups->Login Items. Drag the NCID icon from the right
edge of the Desktop and drop it onto the Login Items (top/bottom/doesn't matter where in the
list).

5. The Login Items window may not refresh automatically so click on the Password tab and then
go back to the Login Items tab. You should then see NCID in the list of kind "Volume".

Homebrew:

Do not use sudo when executing brew install.

The following packages are required:

 brew tap sethrfore/homebrew-r-srf
 brew install icu4c libpcap libphonenumber pcre2 hidapi

 brew install make wget sethrfore/r-srf/tcl-tk-x11 bwidget
 brew install xquartz

Download the source from SourceForge:

 wget https://sourceforge.net/projects/ncid\

 /files/ncid/<version>/ncid-<version>-src.tar.gz

Example:

 wget https://sourceforge.net/projects/ncid\
 /files/ncid/1.14/ncid-1.14-src.tar.gz

Copy ncid-<version>-src.tar.gz to the macOS case-sensitive filesystem and then type:

 tar -xzvf ncid-<version>-src.tar.gz

 cd ncid

 make mac

 sudo make mac-install

Change the default symbolic links for the TCL/TK interpreter to point to the XQuartz version by
typing the following (this normally only needs to be done once or if Homebrew updates TCL/TK):

 ncid-setup mac-homebrew-tcl

Go to Applications->Utilities and launch XQuartz. This will create its default Preference file. It can
take a minute for XQuartz to finish running the first time. This only needs to be done once.

Configure XQuartz to run the NCID GUI client when XQuartz starts by typing the following (only
needs to be done once):

 ncid-setup mac-xquartz-app-menu

MacPorts:

You must use sudo when executing port install.

The following packages are required:

 sudo port install libpcap libphonenumber-cpp pcre2 gmake
 sudo port install dos2unix wget bwidget hidapi abseil
 sudo port install tk +quartz

Download the source from SourceForge:

 wget https://sourceforge.net/projects/ncid\
 /files/ncid/<version>/ncid-<version>-src.tar.gz

Example:

 wget https://sourceforge.net/projects/ncid\

 /files/ncid/1.14/ncid-1.14-src.tar.gz

Copy ncid-<version>-src.tar.gz to the macOS case-sensitive filesystem and then type:

 tar -xzvf ncid-<version>-src.tar.gz

 cd ncid

 make mac

 sudo make mac-install

Go to Applications->Utilities and launch XQuartz. This will create its default Preference file. It can
take a minute for XQuartz to finish running the first time. This only needs to be done once.

Configure XQuartz to run the NCID GUI client when XQuartz starts by typing the following (only
needs to be done once):

 ncid-setup mac-xquartz-app-menu

Other Notes:

For both an install and an upgrade, existing configurations are automatically preserved, but new
ones installed will have .new as the extension. You will need to manually compare your current
configuration files with the ".new" ones and manually edit any differences.

Optional gateways will require additional Perl packages before they can be run. Installing these
with the native Perl package manager called cpan.

This package is required to run email2ncid, obi2ncid, rn2ncid, wc2ncid, wct, and xdmf2ncid:

 cpan install Config::Simple

This additional package is required to run wc2ncid, wct and xdmf2ncid:

 cpan install Data::HexDump

CONFIGURE:

The Makefile preconfigures ncidd.conf for macOS, but you may want to change some of the defaults.

If you are using a gateway instead of a local modem, you need to set cidinput:

 set cidinput = 1 # Caller ID from a serial or USB device and optional gateways
 set cidinput = 2 # Caller ID from gateways with modem support
 set cidinput = 3 # Caller ID from gateways without modem support

If you are using a local modem with or without a gateway:

 set cidinput = 0 (this is the default)

FIRST STARTUP:

NCID requires the server and at least one client to function. The server is required on one computer or device,
but the client can be installed on as many computers as needed.

If you are running the server and client on the same computer and using a modem:

 sudo /usr/local/sbin/ncidd

In Finder, navigate to Applications->Utilities and double-click on XQuartz (or XQuartz.app).

If you are running the server and using a gateway:

 sudo /usr/local/sbin/ncidd

 sudo /usr/local/sbin/<name of gateway>

In Finder, navigate to Applications->Utilities and double-click on XQuartz (or XQuartz.app).

Call yourself and see if it works. If not, stop the gateway first (if used) and then stop the server, using
sudo kill and the appropriate process ID. Continue by reading the test sections.

If everything is OK, enable the NCID server, gateways and client modules you are using to autostart at
boot.

(AUTO)START/STOP:

SERVER:

Under macOS the mechanism used to start the NCID server processes is launchd and requires .plist files in
/Library/LaunchDaemons. The naming convention used is as follows:

 /Library/LaunchDaemons/net.sourceforge.ncid-{name}.plist

Appropriate .plist files for the NCID server processes are created automatically when NCID is installed,
however, they must be manually activated.

Once activated, no action is typically required as the .plist files are configured to automatically start each
time the system boots.

You do not interact with launchd directly, instead you use the launchctl command line utility.

You should only activate the NCID servers, gateways and client modules you need. Activating will also start
the process immediately; there is no need to reboot.

The syntax for stopping the daemons is the same as starting them, except you use the unload subcommand
instead of the load subcommand. Doing an unload stops the daemon immediately and prevents it from
starting automatically the next time the system is booted.

Here are some examples:

Start the NCID server:

 sudo launchctl load -w \

 /Library/LaunchDaemons/net.sourceforge.ncidd.plist

Stop the sip2ncid server:

 sudo launchctl unload -w \
 /Library/LaunchDaemons/net.sourceforge.sip2ncid.plist

Start ncid with ncid-page:

 sudo launchctl load -w \
 /Library/LaunchDaemons/net.sourceforge.ncid-page.plist

Review the man page: man launchctl

CLIENT:

For the NCID GUI client, no .plist is currently provided because of the requirement that NCID must be
installed as root and the GUI preference file is specific to each user.

However, if you follow the steps described in this document, XQuartz will be configured to run the NCID GUI
client when it launches. To have XQuartz launch when you automatically log in, drag XQuartz (or
XQuartz.app) from Applications->Utilities to your account's Login Items: System Preferences->Users &
Groups->Login Items tab.

You may optionally want to drag the XQuartz icon from Applications->Utilities and put it in the Dock.

CHECKING DAEMON STATUS:

Use the launchctl list subcommand to show the daemons currently loaded, optionally using fgrep to filter out
only NCID related processes.

Daemons currently running will have a process id.

Daemons which were stopped without an error will not be listed at all.

If a daemon has stopped due to an error, it will have no process id but will have a numeric exit status. Examine
the contents of the /var/log/system.log file to determine the problem. Once you fix the problem, use the
launchctl unload subcommand followed by the load subcommand.

Example:

 sudo launchctl list|fgrep net.sourceforge.ncid

 PID Status Label
 422 - net.sourceforge.ncid-notify
 419 - net.sourceforge.ncidd

TRIMMING LOG FILES:

macOS uses newsyslog to trim files. To trim the cidcall.log and the ciddata.log files, add this entry to
/etc/newsyslog.conf

 /var/log/cid*.log root:wheel 644 5 * $M1D0 GN

Redhat/Centos/Enterprise RPM Package Install

If NCID does not work, see INSTALL for some simple tests.

If you're using a gateway, review the appropriate section in Gateways.

Table of Contents

Sections:

COMPILE/INSTALL from Source:
INSTALL/UPGRADE from RPM Package:
CONFIGURE:
FIRST STARTUP:
START/STOP/RESTART/RELOAD/STATUS:
AUTOSTART:

COMPILE/INSTALL from Source:

Compile using the ncid-<NCID version>-src.tar.gz tar archive:

The following packages are required:

 sudo dnf install libpcap-devel pcre2-devel hidapi-devel tcl
 sudo dnf install libphonenumber-devel libicu-devel
 sudo dnf install protobuf-devel

These packages are required to run the ncid GUI:
(note that package tk also installs package tcl)

 sudo dnf install tk bwidget

Python3 modules required by ncid client plugins:

 sudo dnf install python3-pytz python3-phonenumbers python3-dialog

This Perl package is required to run email2ncid, obi2ncid, rn2ncid, wc2ncid, wct, and xdmf2ncid:

 sudo dnf install perl-Config-Simple

This additional Perl package is required to run wc2ncid, wct and xdmf2ncid:

 sudo dnf install perl-Data-HexDump

If the above Perl packages are not in the repository, you can try installing with the native Perl package
manager called cpan:

 cpan install Config::Simple

 cpan install Data::HexDump

Finally, compile and install:

 make redhat>> This Python3 package is required to run us_number_info, used by
ncid:

 sudo dnf install python3-phonenumbers

 sudo make redhat-install

Rebuild the rpm packages using ncid-<NCID version>.fc<OS version>.src.rpm

Install the required packages

 dnf builddep ncid-<NCID version>.fc<OS version>.src.rpm

Rebuild the RPM packages

 rpm --rebuild ncid-<NCID version>.fc<OS version>.src.rpm

INSTALL/UPGRADE from RPM Package:

NCID requires the server and client RPM packages to function. The server is required on one computer or device,
but the client can be installed on as many computers as needed.

The client has most of the output modules in its RPM package, but there are optional output modules in their
own RPM packages.

Download the server and client RPM packages using dnf from the Fedora repositories. You can also download
any optional output modules you want.

List the available packages:

 sudo dnf list ncid*

The most recent versions may be here:

 sudo dnf install fedora-release-rawhide
 sudo dnf --enablerepo=rawhide list ncid*

Install the server package (required):

 sudo dnf install ncid-< rpm package >

Install the client package (optional)

 sudo dnf install ncid-client-< rpm package >

Install the gateways package if using a gateway instead of a modem (optional):

 sudo dnf install ncid-gateways-< rpm package >

Install any optional module packages wanted (most modules are included with the client package):

 sudo dnf install ncid-< module rpm package >

If this is an upgrade and you changed any NCID configuration files, RPM creates new files with either .rpmnew
(the new default config file), or .rpmsave (your old config file backed up). The rpmconf tool simplifies updating
the configuration files from .rpmnew from .rpmsave.

Install rpmconf, if needed:

 sudo dnf install rpmconf

Update all configuration files that have .rpmnew or .rpmsave files:

 sudo rpmconf -a

If the current release is not in the Fedora repositories, download the RPM packages from
https://sourceforge.net/projects/ncid/

Download server, gateways and client RPM Packages from SourceForge:

 ncid RPM Package (server - required)

 ncid-client RPM Package (client & default output modules - optional)
 ncid-gateways RPM Package (gateways - optional)

Download any optional output modules wanted from SourceForge:

 ncid-MODULE RPM Package (optional client output modules)

Install or Upgrade the packages:

 Using the file viewer:

 - Open the file viewer to view the NCID RPM packages
 - Select the RPM packages

 - Right click selections and select "Open with Package installer"

 Using dnf:

 sudo dnf install ncid*.rpm

https://sourceforge.net/projects/ncid/

CONFIGURE:

The ncidd.conf file is used to configure ncidd.

The default modem port in ncidd is /dev/ACM0. If you need to change it, set your modem port in
ncidd.conf. This assumes serial port 0:

 set ttyport = /dev/ttyS0

If you are using a Gateway to get the Caller ID instead of a local modem, you need to set cidinput:

 set cidinput = 1 # Caller ID from a serial or USB device and optional
gateways

 set cidinput = 2 # Caller ID from gateways with modem support
 set cidinput = 3 # Caller ID from gateways without modem support

If you are using a local modem with or without a Gateway:

 set cidinput = 0 (this is the default)

FIRST STARTUP:

If you are running the server and client on the same computer and using a modem:

 sudo service ncidd start

 ncid &

If you are running the server and using a gateway:

 sudo service ncidd start

 sudo service <name of gateway> start

 ncid &

Call yourself and see if it works, if not,

stop the gateway used:

 sudo service <name of gateway> stop

stop the server:

 sudo service ncidd stop

and continue reading the test sections.

If everything is OK, enable the NCID server, gateways and client modules you are using, to autostart at
boot.

The GUI ncid client must be started after login, not boot.

NOTE:

The ncid client normally starts in the GUI mode and there is no ncid.init script to start or stop it. There
are rc.init scripts for starting ncid with output modules, for example: ncid-page, ncid-kpopup, etc.

START/STOP/RESTART/RELOAD/STATUS:

Use the 'service' command to control any of the daemons. The service commands are: start, stop, restart, reload
and status. The client can also be started using the output module name instead of ncid. All output modules can
be run at the same time.

Here are some examples:

Start the NCID server:

 sudo service ncidd start

Stop the sip2ncid server:

 sudo service sip2ncid stop

Reload the server alias file:

 sudo service ncidd reload

Restart ncid using ncid-page:

 sudo service ncid-page start

Get the status of ncid using ncid-speak:

 sudo service ncid-speak status

Review the man page: man service

AUTOSTART:

Use the 'chkconfig' command to turn the service on/off for starting at boot.

Here are some examples:

Autostart ncidd at boot:

 sudo chkconfig ncidd on

Autostart ncid-page at boot:

 sudo chkconfig ncid-page on

Autostart ncid-kpopup at boot:

 sudo chkconfig ncid-kpopup on

List runlevels for sip2ncid:

 sudo chkconfig --list sip2ncid

Disable ncid-speak from starting at boot:

 sudo chkconfig ncid-speak off

Review the manpage: man chkconfig

Windows Install

Install either the Windows client package or the complete package.

Table of Contents

Sections:

WINDOWS CLIENT-ONLY INSTALL (NCID version 1.7 and newer):

Requirements
Install NCID Client
Upgrade
Autostart at Login
Specifying command-line arguments and options

WINDOWS CLIENT-ONLY INSTALL (NCID version 1.6 and older):

Requirements
Install ncid.exe

WINDOWS 10 and 11 COMPLETE INSTALL:

WINDOWS CLIENT-ONLY INSTALL (NCID version 1.7 and newer):

Requirements

Windows client version 1.7 and newer

NCID server

ActiveTcl-8.6.9 and newer

https://ncid.sourceforge.io/ncid/ncid.html

Go to the ActiveTcl download page

Download of the ActiveTcl installer requires a free account.

Run the ActiveTcl installer and for Choose Setup Type you must select Complete. Accept all other
defaults.

Python3

Go to Python Releases for Windows and choose "Download Windows installer".
Install the full package and check "Use admin privileges when installing py.exe" and "Add
Python.exe to PATH".
Do not use the Windows store to obtain the Python package because tcl will not be able to find
Python.

After installing python, install the following using pip:

pip install pytz phonenumbers pydialog

Choose only ONE of the following to install:

Zenity for Windows version 3.20.0, dated August 11, 2016 (on the Wayback Machine)

Even though this has an older date than WinZenity below, it is recommended because it has more
features. Be sure to read this reported issue before installing; the NCID Developers did not experience
this issue.

or

WinZenity (Zenity version 3.6 Portable for Windows), dated February 10, 2020

There is no installer, simply unzip zenity.zip and put the extracted zenity.exe in a directory where it can
be found. Suggest <drive>\ncid\zenity.exe.

Install NCID Client

Download "ncid-VERSION-client_windows_setup.exe" from SourceForge.

Run the installer:

Decide if you want a desktop link (default).

Decide if you want a startup link (optional; can be added manually after installation).

Accept defaults for all other prompts until you get to the server address.

Change the server address if different from the default shown.

Examples:

 192.168.22.10

 ncid.sourceforge.net

https://www.activestate.com/products/tcl/
https://www.python.org/downloads/windows/
https://web.archive.org/web/20220823162810/https://github.com/kvaps/zenity-windows/releases
https://web.archive.org/web/20210118205511/https://github.com/kvaps/zenity-windows/issues/1#issue-734260661-permalink
https://github.com/maravento/winzenity
https://sourceforge.net/projects/ncid/files/ncid/

The default installation folder is:

 C:\ncid

File ncid.conf will be located in the same folder as ncid.tcl. Feel free to edit this file and change options
as desired.

To run the client from the Windows Command Prompt, simply type ncid.tcl followed by command-line
arguments and options. No Windows shortcut is needed.

To run ncid.tcl from Windows Explorer, make sure ncid.conf has a correct "set Host" line, then double-
click on ncid.tcl.

Upgrade

Install the latest ncid client for windows and it will replace the old version.

If an existing ncid.conf is detected it will be preserved; the one for the new version will be called
ncid.newconf.

Install the latest ActiveTcl version, must be version 8.6.9 and newer.

Autostart at Login

These steps assume you have successfully completed the Install NCID Client steps.

You can make ncid autostart at login by simply copying the ncid shortcut from the desktop to your Startup
folder. Follow these steps:

1. Find the newly-installed ncid shortcut (icon) on the desktop.
2. Right-click on it and choose Copy.
3. Click on Start and choose All Programs.
4. Scroll until you find the folder called Startup.
5. Right-click on Startup and choose Open.
6. Paste the shortcut with ctrl-v, or in the menu bar choose Edit->Paste.

Specifying command-line arguments and options

Command-line arguments and options can be added to a shortcut. The install package creates a desktop
shortcut that contains the server address argument, for example:

 C:\ncid\ncid.tcl 192.168.22.10

The default port number is 3333 but it can also be changed in the shortcut if it is different from the default
of 3333. Right-click on the shortcut, choose Properties, then add a space followed by the port number, for
example:

 C:\ncid\ncid.tcl 192.168.22.10 3334

Adding options requires they be specified before the server's IP address or hostname.

You should add two hyphens (--) right after ncid.tcl so that the TCL/TK interpreter does not confuse options
intended for itself and those intended for ncid.

You can mix short and long options.

Example:

 C:\ncid\ncid.tcl -- -D 120 --ring 5 -X -H 192.168.22.10 3334

Supported options:

 --alt-date, -A
 --delay <seconds>, -D <seconds>
 --hostname-flag, -H

 --noexit, -X
 --PopupTime <1-99 seconds>, -t <1-99 seconds>
 --ring <0-9|-1|-2|-3|-4|-9>, -r <0-9|-1|-2|-3|-4|-9>

Unsupported options:

 --no-gui
 --pidfile, -p <file>

 --module, -P <module name>
 --verbose, -v <1-9>
 --version, -V
 --wakeup, -W

WINDOWS CLIENT-ONLY INSTALL (NCID version 1.6 and older):

Requirements

Windows client version 1.6 and older

NCID server

Install ncid.exe (deprecated, uses FreeWrap)

The following steps have been deprecated but are being kept for historical purposes. This older Windows
client is still available for download from SourceForge for NCID versions 1.6 and older.

The older version used freeWrap to bundle the ncid client script and the needed TCL/TK interpreter. This
resulted in a simple, stand-alone executable. Unfortunately, it had a technical limitation where the ncid.conf
file could not be edited. Although it was still possible to specify command line arguments via the Windows
shortcut, not all ncid.conf settings had command line equivalents, which meant their default settings could
not be changed. This issue has been eliminated in the current windows install.

Here then are the Windows client instructions for NCID version 1.6 and older....

Execute the ncid installer:

NCID Versions 1.4 and older:

 ncid-VERSION-client_setup.exe

https://ncid.sourceforge.io/ncid/ncid.html
http://freewrap.sourceforge.net/

NCID Versions 1.5 and newer:

 ncid-VERSION-client_win10_x64_setup.exe

Examples:

 ncid-1.0-client_setup.exe

 ncid-1.6-client_win10_x64_setup.exe

You'll be asked for the NCID server address. The default is 127.0.0.1, so you will need to change it.

Examples:

 192.168.22.10

 ncid.sourceforge.net

WINDOWS 10 and 11 COMPLETE INSTALL:

The Windows Subsystem for Linux (WSL) is a full compatibility layer for running Linux applications on Windows.

You must be running Windows 10 version 1607 (the Anniversary update) or Windows 11 22H2.

WSL only runs on 64-bit versions; 32-bit versions are not supported.

Step-by-step screenshot guide to show you how to install bash on Windows 10 and 11.

Be warned, you are trail blazing. The ncid packages were not tested.

Obtaining Caller ID

Table of Contents

Description

Description

NCID requires hardware to obtain Caller ID. It can be a supported modem, a supported device, or a gateway.

Devices Supported
Modems
Gateways

Devices Supported

Table of Contents

Devices Index

Modems

https://itsfoss.com/install-bash-on-windows

ATA (Analog Terminal Adapter)
ARTECH AD102 USB device
CID Easy USB devices
CTI Comet USB device
Holtek HT9032D based PSTN Caller ID module
NetCallerID serial device
Obihai VoIP Telephone Adapters and IP Phone
Tel-Control, Inc. (TCI) serial devices
Whozz Calling serial devices
Whozz Calling Ethernet Link devices

Modems

Modems are normally used to obtain the Caller ID. They can also be used dial a number or hangup on a call.
NCID supports up to 5 modems or serial devices.

Any Caller ID serial or USB modem supported by the operating system can be used. See Incomplete list of
working modems.

NCID can also use those rare modems that do not support Caller ID by configuring gencid in ncidd.conf, but
such modems are limited to indicating the date and start time of the calls. If a Gateway is used to obtain the
Caller ID these modems can be used to dial a number and hangup on a call.

See the modem Configuration section for information on configuring modems.

ATA (Analog Terminal Adapter)

The ATA hardware is for VoIP (Voice over Internet Protocol).

VoIP telephone services use an Analog Terminal Adapter, sometimes called a VoIP gateway.

See also Voip-info.org: A reference guide to all things VOIP.

In order to receive Caller ID from VoIP, the local network must be configured. Three configurations are
considered here:

One device: Cable/DSL Modem with integrated ATA device
Two devices: Cable/DSL Modem + Router Switch with integrated ATA device
Three devices: Cable/DSL Modem + Router Switch + ATA device

One device: Cable/DSL Modem with integrated ATA device

Many cable companies such as Comcast and Time Warner now offer bundled services, referred to in the industry
as "triple play service." This delivers television, Internet service and digital phone service via a single device.

The protocol used for the digital phone service is usually proprietary.

NCID is not supported in this configuration.

Two devices: Cable/DSL Modem + Router Switch with integrated ATA device

https://en.wikipedia.org/wiki/Network_Caller_ID
https://www.voip-info.org/wiki/view/ATA

These router and ATA combo devices may be configured to put the Caller ID on the built-in switch. If you have
other routers working, please contribute to this list:

Router Model Settings Configuration

Linksys WRTP54G -
(has "P" in model name)
use Vonage Talk

Linksys RT31P2 DMZ put computer IP address in the DMZ

Three devices: Cable/DSL Modem + Router Switch + ATA device

A stand-alone ATA device connected to your network will make its Caller ID info (Session Initiation Protocol, or
SIP) available to all the other network devices that are listening for it. A typical setup has the ATA connected to
one physical port on the router/switch and the computer running NCID is connected to a different physical port.
Most modern routers/switches isolate the network traffic on any one physical port from all the other physical
ports. This is done on purpose to optimize network traffic throughput and provide better performance.

The problem is that having the network traffic isolated in this way does not allow the NCID computer to ever
receive the Caller ID info from the ATA.

To circumvent this problem, you have several options:

A. Use an Ethernet Tap.

This is the preferred method to obtain Caller ID. The USB Powered 5-Port 10/100 Ethernet Switch TAP by
Dualcomm is a good choice and has been successfully used with NCID. The Dualcomm USB powered 5-port
Ethernet Switch TAP mirrors all ethernet traffic on port 1 to port 5. Simply plug your ATA into port 1 and your
NCID server into port 5.

The NCID server and ATA need to be (relatively) close together in order to connect directly to the
ethernet TAP.
Requires no software configuration beyond the sip2ncid setup.
Requires additional hardware.

B. Use port mirroring.

Port mirroring is not port forwarding.

Requires DD-WRT, OpenWRT, or similar Linux-based OS to be running on your home router.
Requires manual configuration of the port mirror on your home router.
Any modification to the firewall rules or QoS settings in DD-WRT will result in the port mirroring
commands being discarded; you will either have to reboot DD-WRT or manually enter the
commands via SSH to restart the port mirror.
The NCID server and ATA can be located anywhere on your home network.
No additional hardware needed.

STEPS TO CONFIGURE DD-WRT

1. Use ssh to connect to your router and enter the following port mirroring commands, substituting
your values for ip-of-sip-ata and ip-of-ncid-server:

iptables -t mangle \
 -A POSTROUTING \

https://en.wikipedia.org/wiki/Network_tap
http://www.dual-comm.com/port-mirroring-LAN_switch.htm
https://en.wikipedia.org/wiki/Port_mirroring
https://www.dd-wrt.com/
https://openwrt.org/

 -d ip-of-sip-ata \
 -j ROUTE \
 --tee --gw ip-of-ncid-server

iptables -t mangle \
 -A PREROUTING \
 -s ip-of-sip-ata \
 -j ROUTE \
 --tee --gw ip-of-ncid-server

2. To verify the port mirror is setup properly, use:

iptables -t mangle -L -v -n

which will provide output that should show something similar to:

Chain PREROUTING (policy ACCEPT 4510K packets, 2555M bytes)
pkts bytes target prot opt in out source destination
....
219 152K ROUTE 0 -- * * ip-of-sip-ata 0.0.0.0/0 ROUTE gw:ip-of-ncid-

server tee
....

Chain POSTROUTING (policy ACCEPT 17M packets, 7764M bytes)
pkts bytes target prot opt in out source destination
....
206 82184 ROUTE 0 -- * * 0.0.0.0/0 ip-of-sip-ata ROUTE gw:ip-of-ncid-

server tee
....

3. Follow the sip2ncid setup instructions to make sure that SIP packets are being received.

4. When everything is working properly, add the port mirroring commands to the DD-WRT startup
commands in the Management tab so that they will be run whenever DD-WRT is rebooted.

C. Use Ettercap.

Convince your router to send all SIP packets to your NCID server and have your NCID server pass the packets
on to your ATA. This is most easily and robustly accomplished through the use of ettercap.

If the NCID server or ettercap fails, your router and SIP ATA will automatically start communicating
directly within a few minutes as the SIP ATA and router are not physically isolated.
The NCID server and ATA can be located anywhere on your home network.
No manual configuration of router is required.
No additional hardware needed.

STEPS TO CONFIGURE ETTERCAP

Perform these steps from a command prompt on your NCID server.

1. To determine the proper interface for ettercap to use, ifconfig will show all available interfaces.

For example, wired ethernet is eth0 and wireless ethernet is wlan0 on raspios.

2. Install ettercap.

https://en.wikipedia.org/wiki/Ettercap_%28software%29
https://www.ettercap-project.org/

if on Ubuntu, raspios and other Debian-based systems:

sudo apt-get install ettercap-text-only

if on Fedora and other Redhat-based systems:

sudo dnf install ettercap

3. Execute ettercap, substituting your values for interface, ip-of-sip-ata and ip-of-home-router. The
forward slashes are mandatory.

if using IPV4, surround each IP address with one leading slash and one trailing slash:

 sudo ettercap -T -D -i interface -M arp:remote \

 /ip-of-sip-ata/ /ip-of-home-router/

if using IPV6, surround each IP address with two leading slashes and one trailing slash:

 sudo ettercap -T -D -i interface -M arp:remote \

 //ip-of-sip-ata/ //ip-of-home-router/

4. Follow the sip2ncid setup instructions to make sure that SIP packets are being received.

5. You will want to add ettercap to your operating system startup sequence. Steps to do this vary
depending on distribution and even depending on the version of a specific distribution. Consult your
operating system documentation on how to do this.

D. Install SIP client on NCID server.

If none of the above options are possible on your network, a SIP client can be installed on the NCID server to
attract incoming call information to the NCID server. It is best practice to create a new extension number for
the NCID server's SIP client and for access control to be configured on the voice gateway to prevent this
extension from dialing out. Multiple command-line SIP clients are available, but it should be simple to install
and use Linphone.

STEPS TO CONFIGURE LINPHONE

Perform these steps from a command prompt on your NCID server.

1. Install linphone.

if on Ubuntu, raspios and other Debian-based systems:

 sudo apt-get install linphone

if on Fedora and other Redhat-based systems:

 sudo dnf install linphone

2. Execute linphone.

linphonecsh init

https://www.linphone.org/

linphonecsh register \
 --host <ip of gateway> \
 --username <extension number/username> \
 --password <password>

3. Follow the sip2ncid setup instructions to make sure that SIP packets are being received.

E. Use an Ethernet hub.

(Historical, not recommended)

Ethernet hubs pre-date Ethernet switches and do not isolate network traffic between physical ports. Ethernet
switches have largely rendered Ethernet hubs obsolete. Some Ethernet hubs manufactured today are
actually Ethernet switches in disguise. See the hub reference to determine if a hub is really a hub.

F. Use a router that supports SIP ALG (Application-level gateway).

(Historical, not recommended)

Unfortunately, not all routers implement ALG correctly. The following routers are known to use ALG properly
with NCID. If you have other routers working, please contribute to this list:

Router Model Settings Configuration

Linksys WRT54G -

(no "P" in model name)
SIP packets on port 5060 may need a firmware update if
the firmware version is below 1.00.6. See this link for
firmware info.

Linksys RVS4000
L2

Switch
Assuming gateway is port #1 and NCID SIP gateway is
monitoring port #2: mirror port #1 to port #2

ARTECH AD102 USB device

The ARTECH AD102 is a Caller ID device with USB connectivity. This product is powered entirely from the USB
port. It is a hardware-only product and can be used with your NCID software to track incoming Caller ID
(including Call Waiting Caller ID) and outgoing dialing detection.

This device is sensitive to the signal levels and timings present on a country's phone lines and will likely need
adjusting via artech2ncid.conf. Feel free to submit a Support Request and we'll do our best to help.

When connected to a computer, the device registers as a Human Interface Device (HID). No Linux software is
provided by ARTECH to interface with the AD102 but fortunately an NCID developer was able to reverse engineer
the complex protocol.

The ncidd server must be configured to use it. The server normally assumes a modem is going to be used so it
must be configured to use a gateway instead.

Refer to the artech2ncid setup in the Gateways section to configure NCID to work with the ARTECH AD102.

CID Easy USB devices

https://en.wikipedia.org/wiki/Ethernet_hub
https://en.wikipedia.org/wiki/Network_switch
https://wiki.wireshark.org/HubReference
https://www.voip-info.org/wiki/view/Routers+SIP+ALG
https://www.voip-info.org/wiki-Linksys+WRT54G
https://www.artech.com.tw/en/product/detail/110
https://ncid.sourceforge.io/man/artech2ncid.conf.5.html
https://sourceforge.net/projects/ncid/support

The CID Easy Model-E supports up to two different analog lines and the CID Easy Model-F supports up to four.
They detect incoming Caller ID only. Both are powered entirely from the USB port and both are a hardware-only
product.

When connected to a computer, the device registers as a Human Interface Device (HID). The device manufacturer
has documented the communications protocol used.

The ncidd server must be configured to use it. The server normally assumes a modem is going to be used so it
must be configured to use a gateway instead.

Refer to the cideasy2ncid setup in the Gateways section to configure NCID to work with the CID Easy devices.

CTI Comet USB device

The CTI Comet USB is a Caller ID device with USB connectivity. This product is powered entirely from the USB
port. It is a hardware-only product and can be used with your NCID software to track incoming calls.

A traditional modem communicates with ncidd using ASCII text data, but the CTI Comet USB uses binary data so
ncidd cannot monitor it directly. Instead, the CTI Comet USB is monitored by the xdmf2ncid gateway.

The ncidd server must be configured to use it. The server normally assumes a modem is going to be used so it
must be configured to use a gateway instead.

Refer to the xdmf2ncid setup in the Gateways section to configure NCID to work with the CTI Comet USB.

Holtek HT9032D based PSTN Caller ID module

The Holtek HT9032D based PSTN Caller ID module is a Caller ID device with USB connectivity achieved by the USB
to UART TTL cable adapter. As such this product is powered entirely from the USB port. It can be used with your
NCID software to track incoming calls.

A traditional modem communicates with ncidd using ASCII text data, but the Holtek HT9032D based PSTN Caller
ID module uses binary data so ncidd cannot monitor it directly. Instead, the Holtek HT9032D based PSTN Caller
ID module is monitored by the xdmf2ncid gateway.

The ncidd server must be configured to use it. The server normally assumes a modem is going to be used so it
must be configured to use a gateway instead.

Refer to the xdmf2ncid setup in the Gateways section to configure NCID to work with the Holtek HT9032D based
PSTN Caller ID module.

NetCallerID serial device

The NetCallerID device is used in place of a modem. It is no longer manufactured by Ugotcall (archived info here
and here) but you can sometimes find it on eBay.

The ncidd server must be configured to use it. The server normally assumes a modem is going to be used so it
must be configured to use a serial NetCallerID device that does not use AT commands.

Uncomment these lines in ncidd.conf (this assumes the device is connected to serial port 0):

 # set ttyport = /dev/ttyS0 # Linux Serial Port 0
 # set ttyspeed = 4800 # NetCallerID port speed

https://www.cideasy.com/model-e-133
https://www.cideasy.com/model-f-134
https://www.crucible-technologies.co.uk/products/WEB-COMET
https://www.aliexpress.com/item/-/32807442435.html
https://www.aliexpress.com/item/-/1859099599.html
https://web.archive.org/web/20021013090851/http://ugotcall.com:80/nci.htm
https://www.amazon.com/Ugotcall-NC2001-Net-Caller-NetcallerID/dp/B005VTHD8M

 # set cidinput = 1

Here are the specifications of the NetCallerID device:

ttyport:

 4800 8N1

Output Format:

 ###DATE08082225...NMBR14075551212...NAMEJOHN+++\r
 ###DATE...NMBR...NAME -MSG OFF-+++\r

Obihai VoIP Telephone Adapters and IP Phone

Obihai sells the OBi1032 IP phone and the popular OBi100, OBi110, OBi200, OBi202 VoIP telephone adapters.

OBi devices equipped with a USB port also support the OBiLINE FXO to USB Phone Line Adapter. The OBiLINE
provides PSTN (or POTS) connectivity to phones attached to the OBi device as well as to calls bridged from VoIP
services to a land-line service via the OBi.

It appears that OBi devices require at least one third party VoIP service provider, even if you intend to use a POTS
line as your primary incoming and outgoing service.

The OBi110 comes with an FXO port built-in.

Only the OBi100, OBi110, OBi200 with OBiLINE and OBi202 with OBiLINE, were available for development and
testing. The other OBi products may work completely, partially, or not at all.

Refer to the obi2ncid setup in the Gateways section to configure NCID to work with the Obihai device.

Tel-Control, Inc. (TCI) serial devices

TCI caller ID units are used in place of one or more modems. The company is no longer in business, but you can
sometimes find units on eBay or at telephone equipment liquidators. As an alternative, Whozz Calling serial
devices are direct replacements for TC-1041, MLX-41, TC-1082 and MLX-42 units. NCID has been tested with a TC-
1041.

Configure the TCI unit to use a baud rate of 9600. There are two banks of switches located on the front of the
unit labeled S1 and S2. On bank S2 you want to set DIP switch 1 and 2 to both be ON for a 9600 baud rate.

The ncidd server must be configured to use it. The server normally assumes a modem is going to be used so it
must be configured to use a serial device that does not use AT commands.

Uncomment these lines in ncidd.conf (this assumes the device is connected to serial port 0):

 # set ttyport = /dev/ttyS0 # Linux Serial Port 0
 # set ttyspeed = 9600 # TCI serial device port speed

 # set cidinput = 1

TCI units supply their own line id to ncidd as a two-digit number. When a setting for lineid in ncidd.conf is not
given, ncidd will automatically replace the default with this two-digit number.

https://www.obihai.com/

You may, if you wish, prefix the two-digit number with a meaningful identifier, such as 'MLX-', by uncommenting
this line in ncidd.conf

 # set lineid = POTS

and changing it to

 set lineid = MLX-

Here are the specifications of the TCI serial device:

ttyport:

 9600 8N1

Output Format is fixed field with total length of 70 bytes:

 01 9/05 11:17 AM 702-555-1145 CARD SERVICES
 02 9/05 2:00 PM PRIVATE

Whozz Calling serial devices

Whozz Calling serial devices are used in place of one or more modems. They are currently supported by NCID
only when the Output Format switch is set to TCI.

Set DIP switch 5 to OFF for a baud rate of 9600.

Set DIP switch 7 to ON for TCI output format.

The ncidd server must be configured to use it. The server normally assumes a modem is going to be used so it
must be configured to use a serial device that does not use AT commands.

Uncomment these lines in ncidd.conf (this assumes the device is connected to serial port 0):

 # set ttyport = /dev/ttyS0 # Linux Serial Port 0
 # set ttyspeed = 9600 # TCI serial device port speed
 # set cidinput = 1

The TCI output format supplies its own line id to ncidd as a two-digit number. When a setting for lineid in
ncidd.conf is not given, ncidd will automatically replace the default with this two-digit number.

You may, if you wish, prefix the two-digit number with a meaningful identifier, such as 'WC-', by uncommenting
this line in ncidd.conf

 # set lineid = POTS

and changing it to

 set lineid = WC-

Here are the specifications of the Whozz Calling serial device in TCI mode:

ttyport:

 9600 8N1

Output Format is fixed field with total length of 70 bytes:

 01 9/05 11:17 AM 702-555-1145 CARD SERVICES
 02 9/05 2:00 PM PRIVATE

Whozz Calling Ethernet Link

A Whozz Calling (WC) Caller ID and Call monitoring unit is used in place of one or more modems. There are
various models that all monitor incoming calls and some can monitor outbound as well.

See CallerID.com.

Refer to the wc2ncid setup in the Gateways section to configure NCID to work with the WC device.

Modems

Table of Contents

Index

NCID Modem Requirements
Incomplete list of working modems
Configuration
Additional Modems
Distinctive Ring (DR)
Modem Caller ID Test
Modem Commands that configure Caller ID
Modem Country Codes
Selecting Modem Country codes

NCID Modem Requirements

The modem must be supported by the Operating System (Linux, FreeBSD, Macintosh, etc.) where NCID is
running.

The absolute minimum modem feature that NCID requires is a modem that indicates RING, even if it does not
support Caller ID. By default, if ncidd does not detect Caller ID by ring number two, it will generate a pseudo-
Caller ID by setting the number to "RING" and the name to "No Caller ID". This default behavior can be disabled.

The ideal minimum is a modem that supports Caller ID.

A modem supporting FAX and/or VOICE modes is required for the optional FAX and ANNOUNCE hangup features
respectively.

Some modems come configured for the US. If you live in a different country and your modem does not work,
check the ncidd.log file for the country code. It will give either the bare code or the code and country, for
example:

Modem country code: B5 United States

https://callerid.com/
https://en.wikipedia.org/wiki/Network_Caller_ID

See the Modem Country Codes section for a list of country codes.

You can use minicom to set your country code. It only needs to be set once. Do not include it in ncidd.conf.

For example, if you live in the UK, you would issue this command using minicom:

AT+GCI=B4

Configuration

The tty port of the first modem is set in ncidd.conf. NCID packages for specific distributions (Fedora, Ubuntu,
etc.) are usually pre-configured for an appropriate default port. You can change the default by editing
ncidd.conf and simply uncommenting the appropriate ttyport line, or add a new port.

NCID supports up to 5 modems or serial devices. See the Additional Modems section.

The default tty ports:
 FreeBSD: /dev/cuaU0
 Linux USB modem 0: /dev/ttyACM0
 Mac OS X USB modem: /dev/cu.usbmodem24680241

The tty ports in **ncidd.conf**
 # Mac OS X internal modem:
 set ttyport = /dev/cu.modem

 # Mac OS X USB modem (Dualcomm, Zoom):
 set ttyport = /dev/cu.usbmodem24680241

 # Serial Port 0:
 set ttyport = /dev/ttyS0

 # Linux USB modem 0:
 set ttyport = /dev/ttyACM0

Additional Modems

The first modem or serial device is configured by setting options in the ncidd.conf file. Additional modems and
serial devices can be configured in additional config files, one per modem, with their file names listed in
ncidd.conf. As many as 5 modems and/or serial devices can be configured.

set addedmodems = "modem2.conf modem3.conf modem4.conf modem5.conf"

NOTE: This list of file names must be in quotes.

Each modem config file will define options for one additional modem or serial device and should specifiy at least
a unique ttyport and lineid.

set lineid = line2
set ttyport = /dev/ttyACM2

The lineid will be given to clients for incoming calls, and it can be specified by the client to choose an outgoing
line for the DIAL feature.

Distinctive Ring (DR)

From: DISTINCTIVE RING & MODEMS

You can find out whether your modem supports DR by connecting to its COM port via Windows HyperTerminal
(or using the Unix program minicom) and issuing the appropriate AT command; if it responds with an "OK", it
does, otherwise it does not.

The AT command to enable DR depends on the modem chipset:

Chipset Command
3Com/USR/TI ATS41=1
Rockwell/Conexant AT-SDR=7

Lucent/Agere AT+VDR=1,0

Each chipset reports DR differently:

3Com reports ring codes:

 RING A, RING B, RING C

Rockwell reports ring codes:

 RING 1, RING 2, RING 3

Lucent reports the actual ring cadence (the duration of the ringing and the silent periods) with DROF/DRON
messages.

As an example, one long ring usually indicates the main phone number and two short rings usually indicates the
first DR phone number. Responses below were generated by two short rings:

3Com:

RING B

Rockwell:

RING 2

Lucent:

DRON=5
DROF=11
DRON=5
DROF=34

Modem Caller ID Test

Start ncidd in debug mode with verbose level 3. You do not need to start any client.

ncidd -Dv3

You should get something similar to the following. The important part is the last line: Modem is fd x where
x is usually a number less than 10

Started: 05/04/2011 21:48:14
Server: ncidd (NCID) 0.81.15

http://www.modemsite.com/56k/dring.asp

logfile: /var/log/ncidd.log
Command line: ncidd
 -Dv3
Processed config file: /etc/ncid/ncidd.conf

Verbose level: 3
Configured to send 'cidlog' to clients.
Configured to send 'cidinfo' to clients.
Processed alias file: /etc/ncid/ncidd.alias
Leading 1 from a call required in an alias definition
CID logfile: /var/log/cidcall.log
CID logfile maximum size: 1000000 bytes

Data logfile: /var/log/ciddata.log
Telephone Line Identifier: -
TTY port opened: /dev/ttyACM0
TTY port speed: 19200
TTY lock file: /var/lock/lockdev/LCK..ttyACM0
TTY port control signals enabled
Caller ID from a modem and optional gateways

Handles modem calls without Caller ID
Sent Modem 20 of 20 characters:
AT Z S0=0 E1 V1 Q0
Modem response: 26 characters in 1 read:
AT Z S0=0 E1 V1 Q0
OK
Try 1 to init modem: return = 0.

Modem initialized.
Sent Modem 11 of 11 characters:
AT+VCID=1
Modem response: 17 characters in 1 read:
AT+VCID=1
OK
Modem set for CallerID.

Network Port: 3333
Debug Mode
Not using PID file, there was no '-P' option.
Modem is fd 4

If you did start a client, you will get a line something like:

Client 6 from 127.0.0.1 connected, sent call log: /var/log/cidcall.log

Next, call yourself and you should see something like:

RING
CIDINFO: *LINE*VOIP*RING*1*TIME*21:49:49*
DATE = 0504
TIME = 2149
NMBR = 4075551212

NAME = Chmielewski Joh
CID: *DATE*05042011*TIME*2149*LINE*VOIP*NMBR*4075551212*MESG*NONE*NAME*John*
RING
CIDINFO: *LINE*VOIP*RING*2*TIME*21:49:55*

Hang up the phone and a second or two later you should see:

CIDINFO: *LINE*VOIP*RING*0*TIME*21:50:02*

Do a <CTRL-C> to break out and end the test:

^CReceived Signal 2: Interrupt
Terminated: 05/04/2011 21:53:30

If your modem does not support CID, ncidd will generate a CID line on ring 2 to indicate "No Caller ID" by setting
the number to "RING" and the name to "No Caller ID". You will get something like:

RING
CIDINFO: *LINE*VOIP*RING*1*TIME*21:53:02*
RING
CIDINFO: *LINE*VOIP*RING*2*TIME*21:53:08*

CID: *DATE*05042011*TIME*2153*LINE*VOIP*NMBR*RING*MESG*NONE*NAME*No Caller ID*
RING
CIDINFO: *LINE*VOIP*RING*3*TIME*21:53:14*

If ncidd is configured to not generate a CID line for "No Caller ID" (ncidd.conf has gencid=0), you will get
something like:

RING
CIDINFO: *LINE*VOIP*RING*1*TIME*21:53:02*
RING
CIDINFO: *LINE*VOIP*RING*2*TIME*21:53:08*

RING
CIDINFO: *LINE*VOIP*RING*3*TIME*21:53:14*

Hang up the phone and a second or two later you should see:

CIDINFO: *LINE*VOIP*RING*0*TIME*21:53:21*

Do a <CTRL-C> to break out and end the test:

^CReceived Signal 2: Interrupt
Terminated: 05/04/2011 21:53:30

Modem Commands that configure Caller ID

AT#CID=1

Enables Caller ID in USR, Texas Instruments, Rockwell compatible modems (excluding software modems and
Rockwell HCF), Hayes, several Pace modems, PowerBit, GVC, PCTel, IDC (VR series) devices, Diamond Supra
(Rockwell compatible).

AT+VCID=1
or
AT+FCLASS=8;+VCID=1

Enables Caller ID in all IS-101 modems, Lucent LT, Rockwell HCF (V.90 or K56FLEX, e.g. PCI modems from
Creative), some Pace modems (IS-101 compatible), Multitude, IDC, Cirrus Logic, most IDC modems.

AT#CLS=8#CID=1

Enables Caller ID in voice mode on some 56K USR modems, some Rockwell compatible (Boca Research,
Cardinal, voice Zoom).

AT#CC1

Enables Caller ID on older non-voice Aspen modems, older Cirrus Logic, Motorola Voice Surfer, Phoebe.

AT*ID1

Enables Caller ID on some Motorola modems.

AT%CCID=1
or
AT%CCID=3

Enables Caller ID on Practical Peripherals modems.

AT$JSCID=4,1
or
AT$JSCD=1,0

Enables Caller ID on ELSA ML 56k Internet II (Netherlands) modems.

AT#CID=1
or
AT+VCID=1

Enables Caller ID on most modems not listed above.

AT+FCLASS=8
or
AT+FCLASS=8;+VCID=1
or
AT-STE=1;+VCID=1

Generic commands to select Active Service Class (Voice Mode) on most voice modems.

AT+VRID=0

The other AT commands above enable Caller ID during an incoming call. This command reports the most
recently received Caller ID after a call has completed. It can sometimes be useful in testing.

Modem Country Codes

U.S. Robotics Country Codes

This extended syntax command selects and indicates the country of operation for the modem. It determines the
settings for any operational parameters that need to be adjusted for national regulations or telephone
networks.

Syntax

https://www.usr.com/support/5631/5631-ug/generic.htm

+GCI=CountryCode

Defined values for supported countries are:

Country Code Country Code Country Code

Austria 0A Iceland 52 Poland 8A
Belgium 0F Ireland 57 Portugal 8B
Cyprus 2D Israel 58 Spain A0

Czech Republic 2E Italy 59 Slovakia FB
Denmark 31 Latvia F8 Slovenia FC
Estonia F9 Liechtenstein 68 Sweden A5
Finland 3C Lithuania F7 Switzerland A6

France 3D Luxembourg 69 TBR-21(Default) F6
Germany 42 Malta B4 Turkey AE
Greece 46 Netherlands 7B United Kingdom B4

Hungary 51 Norway 82 United States B5

The factory default is F6 indicating TBR-21.

TBR-21 is a European telecommunications standard to which all telephone equipment must adhere to, to be
allowed connection to Europe's public switched telephone network. It is the default even for U.S. Robotics
modems sold in the United States.

Command to report current country code value

+GCI?

COMMAND RESPONSE:

+GCI: CountryCode

RESPONSE EXAMPLE FOR FRANCE:

+GCI: 3D

Command to report all supported country code values

+GCI=?

COMMAND RESPONSE:

+GCI: (CountryCode[,CountryCode][,CountryCode])

RESPONSE EXAMPLE:

This indicates the modem has been set for use in the United Kingdom, France or Germany.

+GCI: (B4,3D,42)

ACM5003-M Modem Country Code List (subset of the T.35 Country Code List used by most modems)

Code Country Code Country Code Country
00 Japan 53 India 9C Singapore
07 Argentina 54 Indonesia 9F South Africa

09 Australia 57 Ireland A0 Spain
0A Austria 58 Israel A1 Sri Lanka
0F Belgium 59 Italy A5 Sweden

16 Brazil 61 Korea (Republic of) A6 Switzerland
1B Bulgaria 62 Kuwait A9 Thailand

https://opengear.zendesk.com/entries/20343612-ACM5003-M-Modem-Country-Code-List

20 Canada 64 Lebanon AD Tunisia
25 Chile 69 Luxembourg AE Turkey

26 China 6C Malaysia B3 United Arab Emirates
27 Columbia 73 Mexico B4 United Kingdom
2D Cyprus 77 Morocco B5 Unites States
2E Czech Republic 7B Netherlands B7 Uruguay

31 Denmark 7E New Zealand B8 Russia
36 Egypt 82 Norway F9 Estonia
3C Finland 84 Pakistan FA US Virgin Islands

3D France 89 Philippines FB Slovakia
42 Germany 8A Poland FC Slovenia
46 Greece 8B Portugal FD (Universal)

50 Hong Kong 8E Romania FE Taiwan
51 Hungary 98 Saudi Arabia
52 Iceland 99 Senegal

Selecting Modem Country Codes

Not every country has a separate country code. Some countries share country codes. Here is a list of AT codes for
some modems and a table of country codes to select for country locations.

NCID Gateways

Table of Contents

Gateways Index

artech2ncid setup
cideasy2ncid setup
email2ncid setup
ncid2ncid setup
obi2ncid setup
rn2ncid setup
sip2ncid setup
wc2ncid setup
xdmf2ncid setup
yac2ncid setup

artech2ncid setup

How to setup one ARTECH AD102 USB device for Caller ID using artech2ncid.

Sections:

REQUIREMENTS
CONFIGURATION
EXAMPLE
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

The ARTECH AD102 USB device connects to a POTS (Plain Old Telephone System) line to provide Caller ID on
incoming or outgoing calls. It can only handle one telephone line.

https://doc.slitaz.org/en:handbook:pstn:countries
https://www.artech.com.tw/en/product/detail/110

CONFIGURATION:

Connect the ARTECH AD102 USB device to the computer using a USB cable and then connect the ARTECH AD102
USB device to the telephone line.

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the artech2ncid gateway to handle an additional
POTS line. No need to configure ncidd.conf.

If you are not using a modem or serial device for Caller ID, you need to configure ncidd by changing this line in
ncidd.conf:

 From: # set cidinput = 3

 To: set cidinput = 3

If you are using a modem for hangup or to dial calls, you must have a modem connected to the same telephone
line as the device connected to the AD102, and you must configure ncidd by changing these lines in ncidd.conf:

 From: # set cidinput = 2
 To: set cidinput = 2

 From: # set lineid = POTS
 To set lineid = <device name>

Notes:

the artech2ncid lineid is the device name
see Note 1 for an explanation of cidinput

Once you change ncidd.conf, you must start/restart ncidd to read it.

Normally you do not have to edit artech2ncid.conf.

You may need to change other settings in artech2ncid.conf. For instance, the configuration assumes ncidd is
running on the same computer using its default port.

EXAMPLE:

This ncidd.conf example is for the ARTECH AD102 USB device:

connected to /dev/CometUSB0 or /dev/HoltekUSB0
a modem connected to the same phone line connected to the Artech AD102 USB device
automatic plain hangup on unwanted calls

 # ARTECH AD102 USB device:
 set cidinput = 2
 set lineid = "ARTECH"

TESTING:

Once you connected the ARTECH AD102 USB device and modified artech2ncid.conf, if necessary, start
artech2ncid:

 artech2ncid [--test]

The --test parameter is optional, but it is a good idea to use it so that artech2ncid does not connect to the
NCID server during the configuration process. You'll want to use this parameter if this is the first time you are
setting artech2ncid up:

 artech2ncid --test

The above command puts artech2ncid in test and debug modes at verbose level 3. It will display verbose
statements on the terminal, ending with "Waiting for calls".

If artech2ncid terminates you should be able to see why and fix it.

You can get a detailed usage message by executing:

 artech2ncid --help

or print out the manual page by executing:

 man artech2ncid

Call yourself. You should see more verbose messages as the call is processed. If it looks OK, terminate
artech2ncid with <CTRL><C>.

Next, restart artech2ncid in debug mode so it will connect to ncidd:

 artech2ncid -D

The above command puts artech2ncid in debug mode at verbose level 3. It will display verbose statements on
the terminal, ending with "Waiting for calls".

Call yourself. If you do not get a Caller ID message sent to ncidd, you should get an error message saying what
is wrong.

If you had Caller ID sent to a client, setup is complete.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally artech2ncid is started using the provided init, service, rc, or plist script for your OS. For more
information, refer to the INSTALL section for your OS. If none is provided you need to start artech2ncid manually:

 sudo artech2ncid

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to
artech2ncid.conf.

If artech2ncid does not work, you should have enough information to ask for help.

cideasy2ncid setup

How to setup one CID Easy Model-E or Model-F USB device. Only one CID Easy device can be connected at a time.

Sections:

REQUIREMENTS
CONFIGURATION
EXAMPLE
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

Connect the CID Easy USB Model-E (2 ports labeled A B) or the CID Easy USB Model-F (4 ports labeled A B C D) to
one or more POTS (Plain Old Telephone System) lines to provide Caller ID on incoming calls.

CONFIGURATION:

Connect the CID Easy Model-E or Model-F USB device to the computer using a USB cable and then connect the
CID Easy Model-E or Model-F USB device to the telephone line using the remaining cable.

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the cideasy2ncid gateway to handle an additional
POTS or line. No need to configure ncidd.conf.

If you are not using a modem or serial device for Caller ID, you need to configure ncidd by changing this line in
ncidd.conf:

 From: # set cidinput = 3
 To: set cidinput = 3

If you are using a modem for hangup or to dial calls, you must have a modem connected to the same telephone
line as the CID Easy device, and you must configure ncidd by changing these lines in ncidd.conf:

 From: # set cidinput = 2

 To: set cidinput = 2

 From: # set lineid = POTS

 To set lineid = CIDEASY

Notes:

When the gateway is running, the generated lineid it transmits to ncidd uses the convention
<gatewayid>‑<port letter> where:

The <gatewayid> comes from ncidd.conf above.

The <port letter> is supplied automatically by the CID Easy device depending on the device model
and which port detected the Caller ID.
The Model-E port letters would be A or B.
The Model-F port letters would be A or B or C or D.

see Note 1 for an explanation of cidinput

Once you change ncidd.conf, you must start/restart ncidd to read it.

https://www.cideasy.com/
https://www.cideasy.com/

Normally you do not have to edit cideasy2ncid.conf.

You may need to change settings in cideasy2ncid.conf. For instance, the configuration assumes ncidd is
running on the same computer using its default port.

EXAMPLE:

This ncidd.conf example is for the CID Easy Model E or Model F USB device:

a CID Easy USB device connected to USB and telephone line connected to port A
a modem connected to the same phone line connected to the CID Easy USB device
automatic plain hangup on unwanted calls

 # ncidd.conf
 set cidinput = 2
 set lineid = "CIDEASY"

TESTING:

Once you connect the CID Easy device and configure ncid.conf, start cideasy2ncid:

 sudo cideasy2ncid [--test]

The --test parameter is optional, but it is a good idea to use it so that cideasy2ncid does not connect to the
NCID server during the configuration process. You'll want to use this parameter if this is the first time you are
setting cideasy2ncid up:

 sudo cideasy2ncid --test

The above command puts cideasy2ncid in test and debug modes at verbose level 3. It will display verbose
statements on the terminal, ending with "Waiting for calls". It should show the USB port for the device.

If cideasy2ncid terminates you should be able to see why and fix it.

You can get a detailed usage message by executing:

 cideasy2ncid --help

or print out the manual page by executing:

 man cideasy2ncid

Call yourself. You should see more verbose messages as the call is processed. If it looks OK, terminate
cideasy2ncid with <CTRL><C>.

Next, restart cideasy2ncid in debug mode so it will connect to ncidd:

 sudo cideasy2ncid -Dv3

The above command puts cideasy2ncid in debug mode at verbose level 3. Call yourself. If you do not get a Caller
ID message sent to ncidd, you should get an error message saying what is wrong.

If you had Caller ID sent to a client, setup is complete.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally cideasy2ncid is started using the provided init, service, rc, or plist script for your OS. For more
information, refer to the INSTALL section for your OS. If none is provided you need to start cideasy2ncid
manually:

 sudo cideasy2ncid

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to
cideasy2ncid.conf.

If cideasy2ncid does not work, you should have enough information to ask for help.

email2ncid setup

How to setup the email-to-NCID message gateway to convert an email into an NCID message and send it to the
NCID server. If the notify option is used, it will only send the email subject line to the NCID server.

Sections:

REQUIREMENTS
CONFIGURATION
TESTING
STEP-BY-STEP SETUP FOR RASPBERRY Pi

REQUIREMENTS:

A dynamic DNS service. Here are just a few examples:

Name Basic Service Website

ChangeIP free https://www.changeip.com/dns.php

DNSdymanic free https://www.dnsdynamic.org/

Dynu free https://www.dynu.com

DynDNS paid https://www.dyn.com

A Mail Transport Agent (MTA):

exim, postfix, sendmail, etc

procmail

CONFIGURATION:

firewall:

Forward port 25 TCP/UDP to the computer running the MTA.

https://www.changeip.com/dns.php
https://www.dnsdynamic.org/
https://www.dynu.com/
https://www.dyn.com/

procmail:

Run the following setup script to create or update $HOME/.procmailrc:

 ncid-setup email2ncid

The $HOME/.procmailrc file is configured to pipe to email2ncid when the subject line is NCID Message.
A commented out recipe will pipe to email2ncid --notify if the From: email address matches. A second
commented out recipe will forward the email if the From: email address matches.

MTA:

Accept mail for your dynamic DNS service host name.
Listen on all network interfaces, not just localhost.
Use mbox format.
Configure smarthost to your server provider email host if you want to send email.

TESTING:

You can test if email2ncid is configured for the email server and can connect to it. The test line and result should
be similar to:

 $ echo test | email2ncid -t3

test test=3 Configuration File: /etc/ncid/email2ncid.conf mesg=0 start=0 plain=0 html=0 multi=0 meta=0
status=0 ncidserver: localhost:3334 200 Server: ncidd (NCID) 1.5 210 API: 1.3 Feature Set 1 2 3 4 253 No Call log

Next, send an email to yourself at the host name you picked for the Dynamic DNS service. The subject line must
be: NCID Message

If it does not work, save the email message. You can retest it by:

cat saved_email_message | email2ncid -t1

Review email2ncid.1 for more information.

STEP-BY-STEP SETUP FOR RASPBERRY PI:

How to setup the email2ncid gateway on the Raspberry Pi for user pi.

First go to the free dynamic IP service at https://www.changeip.com/dns.php and register a host name
at their domain. For example: foobar.freedynamicdns.us

Configure your firewall to pass port 25 TCP and UDP to the Raspberry Pi IP address.
The Raspberry Pi must have a fixed IP address or a static DHCP lease.

Install programs (mutt is recommended for a mail reader):

sudo apt-get install procmail exim4 mutt

Configure exim4:

sudo dpkg-reconfigure exim4-config

https://ncid.sourceforge.io/man/email2ncid.1.html
https://www.changeip.com/dns.php

with the following settings:

Configuration Parameter Select or Type In

Mail Server Configuration info screen Ok

General type of mail configuration:
mail sent by smarthost; received via SMTP or

fetchmail

System mail name: raspberrypi Accept default

Mail Server Configuration info screen Ok

IP-addresses to listen on for incoming
SMTP connections: 127.0.0.1 ; ::1

Replace with 0.0.0.0

Other destinations for which mail is
accepted: raspberrypi

Add a semicolon and then your Internet host name:
raspberrypi;foobar.freedynamicdns.us

Machines to relay mail for: Leave blank

IP address or host name of the outgoing
smarthost:

Change to blanks if no outgoing mail or enter your
service provider outgoing smarthost

Hide local mail name in outgoing mail? No

Mail Server Configuration info screen Ok

Keep number of DNS-queries minimal
(Dial-on-Demand)?

No

Delivery method for local mail: mbox format in /var/mail/

Split configuration into small files? No

Root and postmaster mail recipient: Add user id, for Raspberry Pi it is usually pi

Start exim4:

sudo invoke-rc.d exim4 start

Enable exim4 at boot:

sudo update-rc.d exim4 defaults

Run the following setup script to create or update $HOME/.procmailrc:

ncid-setup email2ncid

If the NCID server is not running on the Raspberry Pi, edit file email2ncid.conf, uncomment the line for
variable NCIDSERVER and set it to the correct IP address (or hostname) and port. For example:

NCIDSERVER=192.168.10.55:3333

Test with a 2 line mail message:

mail pi@foobar.freedynamicdns.us

Subject: NCID Message
My first
email message.

The resulting NCID message that is broadcast to all clients should be one line: My first email message.

ncid2ncid setup

How to setup the ncid2ncid gateway to forward caller ID and messages from multiple NCID sending servers (four
maximum) to a single NCID receiving server.

Sections:

REQUIREMENTS
CONFIGURATION
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

One NCID receiving server and at least one NCID sending server.

CONFIGURATION:

Receiving Server

The ncid2ncid process connects to a receiving server as a gateway, that is, a device that is a source of caller
ID and messages. Typically, ncid2ncid is running on the receiving server and for this reason the default
receiving server is 127.0.0.1:3333. This can be changed by using the tohost and toport variables in file
ncid2ncid.conf, or by using the -t|--tohost [host][:port] arguments on the command line.

A receiving server is required.

Sending Servers

The ncid2ncid process connects to sending servers as if it is a client. You specify sending servers using the
fromhostX and fromportX variables in file ncid2ncid.conf, where X is a digit 1-4. You can also configure the
sending servers from the command line by using multiple -f|--fromhost [host][:port] arguments.

Note the subtle difference: Only specify a digit 1-4 for variables in file ncid2ncid.conf; do not use them on
the command line. The following examples are equivalent:

ncid2ncid.conf:

 set fromhost1 = 192.168.20.1
 set fromport1 = 3334
 set fromhost2 = 192.168.20.9:3335

command line:

 ncid2ncid --fromhost 192.168.20.1:3334 --fromhost 192.168.20.9:3335

There are no default sending servers and at least one must be specified.

The default port for all sending/receiving servers is 3333.

TESTING:

Start ncid2ncid in debug mode at verbose level 3:

 sudo ncid2ncid -Dv3

Debug mode will give a reason if ncid2ncid dies and will show its processing data.

If ncid2ncid does not work, you should have enough information to ask for help.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally ncid2ncid is started using the provided init, service, rc, or plist script for your OS. For more
information, refer to the INSTALL section for your OS. If no script is provided you need to start ncid2ncid
manually:

 sudo ncid2ncid

If any options are needed, add them to ncid2ncid.conf.

obi2ncid setup

How to setup an Obihai device to send Caller ID and messages via the obi2ncid gateway.

Sections:

REQUIREMENTS
DEVICE CONFIGURATION
NCID CONFIGURATION
EXAMPLE
TESTING
OUTPUT TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

An Obihai OBi device is required. Only the OBi100, OBi110, OBi200 with and without OBILINE and OBi202 were
available for development and testing. Other OBIHAI products may or may not work.

It is possible to configure multiple OBi devices to work with NCID. Each device must have a unique port
configured and the DEVICE CONFIGURATION and NCID CONFIGURATION must use the same port. Ports 4335
through 4339 are normally used. Port 4339 is used by the test-obi-gw test script in the NCID source package.

You must install your OBi device on your local network, create a free OBiTALK account and link your OBi to your
account so that it appears on your OBiTALK Dashboard. Then you need to set up your voice service provider(s)
(there are "wizards" that make it easy to set up the most common ones).

https://www.obihai.com/
https://www.obitalk.com/

Make sure you can successfully make and receive calls before continuing.

DEVICE CONFIGURATION:

The OBi device needs to be configured for NCID use. You can do this using either the "Advanced Configuration"
(a.k.a. "Expert") mode accessible through the OBiTALK dashboard, or by using a browser to login directly to the
OBi device using its IP address. The OBiTALK Dashboard is the simplest and easiest method and is what will be
used below.

On the OBiTALK dashboard, find your OBi device and click on the dark gray gear icon with the red "E" (for
"Expert" or Advanced Configuration).

Navigate to System Management->Device Admin.

Find the Syslog section.

Override the Server parameter by first UNCHECKING OBiTALK Settings and then immediately
UNCHECK Device Default.

Under the Value column for Server, type in the NCID server hostname or IP address.

Override the Port parameter by first UNCHECKING OBiTALK Settings and then immediately
UNCHECK Device Default.

Under the Value column for Port, change the default of 514 to 4335.

Click on the Submit button to save the changes.

The page will be redisplayed. At the top you should see the message Successfully saved OBi Expert
config to OBiTALK or something similar.

Navigate to Voice Service.

There will be a list that starts with "SP1 Service" and depending on the OBi model will go up to "SP4
Service." For any and all of these Services that is not configured for GTALK (a.k.a. Google Voice),
scroll to where you see the parameter name of X_SipDebugOption (it is usually a few lines above
the start of the SIP Credentials section).

Override the X_SipDebugOption parameter by first UNCHECKING OBiTALK Settings and then
immediately UNCHECK Device Default. Under the Value column, change the default of Disable to
Log All Except REGISTER Messages.

Click on the Submit button to save the changes.

The page will be redisplayed. At the top you should see the message Successfully saved OBi Expert
config to OBiTALK or something similar.

NCID CONFIGURATION:

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the obi2ncid gateway to handle Caller ID from
VoIP. No need to configure ncidd.conf.

If you are not using a modem for Caller ID, you need to configure ncidd by changing this line in ncidd.conf:

 From: # set cidinput = 3
 To: set cidinput = 3

If you are using a modem for hangup or to dial calls, you must have a modem connected to the same telephone
line as the OBi device, and you must configure ncidd by changing these lines in ncidd.conf:

 From: # set cidinput = 2
 To: set cidinput = 2

 From: # set lineid = POTS
 To set lineid = <OBi lineid>

Notes:

the OBi lineid depends on the service provider
see Note 1 for an explanation of cidinput

Once you change ncidd.conf, you must start/restart ncidd to read it.

Normally obi2ncid does not need to be configured unless you set up the OBi device to use a syslog port other
than 4335.

EXAMPLE:

This ncidd.conf example is for a OBi device:

connected to the Google Voice service provider
a modem connected to the same line input to the OBi device
automatic plain hangup on unwanted calls:

 set cidinput = 2

 set lineid = "GTALK"

TESTING:

If this is the first time you set obi2ncid up, you should test obi2ncid without connecting it to ncidd. For example,
if using a obi200:

 obi2ncid -t -L obi200.log

The above command puts obi2ncid in test mode at verbose level 3. It will display verbose statements on the
terminal, ending with "Listening at port 4335". Test mode prevents obi2ncid from connecting with ncidd.

If obi2ncid terminates you should be able to see why and fix it.

If you have a problem that requires debugging you should use verbose level 5 and create a data file. For
example, if using a obi200:

 obi2ncid -t -v5 -L obi200.log -R obi200.data

You can get a detailed usage message by executing:

 obi2ncid --help

or print out the manual page by executing:

 obi2ncid --man

If it looks OK, terminate obi2ncid with <CTRL><C>.

Next, restart obi2ncid in debug mode so it will connect to ncidd:

 obi2ncid -Dv3

Make a call and you should see the CALL and CALLINFO lines that are sent to the server. You should also see CID
and END lines sent back from the server. If there is a problem an error message may be generated.

OUTPUT TESTING:

This is an advanced set of tests used when adding a new voice provider or device to the obi2ncid. It is also after
fixing a problem with a voice provider, to make sure the fix did not break anything.

Suggested setup for easiest testing:

If testing both the OBi110 and OBi200, leave the OBi110 at port 4335 and change the OBi200 port to
4336.

It's best to test at verbose 3 in test mode to just see CALL and CALLINFO lines:

 perl obi2ncid.pl -t -L test.log -C obi2ncid.conf -o 4335

If there is a problem with a test or tests, change to v5, then after each test move the test.log and
test.data files to another name so there is one test call per log.

 perl obi2ncid.pl -t -L test.log -R test.data -C obi2ncid.conf \
 -o 4335 -v5

Complete testing of the OBi110 and OBi200 requires checking that the name, number and line id are the same
for the CALL and CALLINFO lines. In addition CALLINFO should show CANCEL if there was no pickup or BYE if
there was a pickup.

To verify all is working correctly you need to test the following:

 Incoming call:
 originating caller hangup before answer

 originating caller hangup after answer
 receiving caller hangup after answer

 Outgoing call:
 originating caller hangup before answer
 originating caller hangup after answer
 receiving caller hangup after answer

Additional tests for POTS calls. On the OBi110, connect the house Telco line to the OBi110 Telco Line connector.
The OBi200 requires the OBiLINE FXO to USB Phone Line Adapter; connect the house Telco line to the OBiLINE.

 Incoming Telco Line
 hangup with no answer
 hangup after house phone answers
 hangup after answer on the OBi device

 Outgoing Telco Line
 hangup with no answer
 hangup after house phone answers
 hangup after answer on the OBi device

START/STOP/RESTART/STATUS/AUTOSTART:

Normally obi2ncid is started using the provided init, service, rc, or plist script for your OS. For more information,
refer to the INSTALL section for your OS. If none is provided you need to start obi2ncid manually:

 sudo obi2ncid &

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to obi2ncid.conf.

If obi2ncid does not work, you should have enough information to ask for help.

rn2ncid setup

How to setup Remote Notifier on an Android smart phone to send Caller ID and messages via the rn2ncid
gateway.

Sections:

REQUIREMENTS
CONFIGURATION
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

The smart phone needs to be running Remote Notifier for Android from F-Droid.

Install it and configure it for the IP address of the computer running ncidd.

CONFIGURATION:

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the rn2ncid gateway to handle Caller ID from
smart phones. No need to configure ncidd.conf.

If you are not using a modem or serial device for Caller ID, you need to configure ncidd by changing this line in
ncidd.conf:

https://f-droid.org/wiki/page/org.damazio.notifier

 From: # set cidinput = 3

 To: set cidinput = 3

Hangup is not supported for Caller ID from the rn2ncid gateway.

Once you change ncidd.conf, you must start/restart ncidd to read it.

(Note: See Note 1 for an explanation of cidinput)

Normally rn2ncid does not need to be configured unless you are using ncid-page to send calls and messages to
your smart phone. In that case you need to edit the reject line at the end of rn2ncid.conf and specify the "from"
of SMS/MMS messages to be rejected and not passed through to the NCID server. (If you do not do this, the result
will be an endless loop which could result in excessively high data or text charges by your cell phone carrier.) The
setting for reject is usually of the form root@[hostname] where [hostname] is the result of executing the Unix
hostname command on the computer running ncidd.

For example:

$ hostname
smurfzoo.private
$

Edit rn2ncid.conf:

 reject = root@smurfzoo.private

TESTING:

If this is the first time you set rn2ncid up, you should test rn2ncid without connecting it to ncidd.

 rn2ncid --test

The above command puts rn2ncid in test and debug modes at verbose level 3. It will display verbose statements
on the terminal, ending with "Listening at port 10600". It should show configured options. Test mode prevents
rn2ncid from connecting with ncidd.

If rn2ncid terminates you should be able to see why and fix it.

You can get a detailed usage message by executing:

 rn2ncid --help

or print out the manual page by executing:

 rn2ncid --man

On your smart phone, launch Remote Notifier and choose "Send test notification". rn2ncid should show
something like this:

 NOT: PHONE 0123: PING Test notification

(Note: 0123 is the phone ID and will be different for your phone.)

If it looks OK, terminate rn2ncid with <CTRL><C>.

Next, restart rn2ncid in debug mode so it will connect to ncidd:

 rn2ncid -Dv3

Do the "Send test notification" again and it should be sent to the server and its clients. If you do not get a "NOT"
(short for "NOTIFY") message sent to the server, you should instead get an error message saying what is wrong.

If you had the PING "Test notification" sent to a client, setup is complete.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally rn2ncid is started using the provided init, service, rc, or plist script for your OS. For more information,
refer to the INSTALL section for your OS. If none is provided you need to start rn2ncid manually:

 sudo rn2ncid &

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to rn2ncid.conf.

If rn2ncid does not work, you should have enough information to ask for help.

sip2ncid setup

How to setup VoIP Caller ID using sip2ncid.

Sections:

REQUIREMENTS
CONFIGURATION
EXAMPLE
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

VoIP telephone service using SIP.

The sip2ncid gateway automatically monitors SIP packets that use either TCP or UDP protocols.

Configure your LAN for SIP. See ATA (Analog Terminal Adapter).

Special requirements for sip2ncid under Cygwin:

Download latest WinPcap installer from https://www.winpcap.org/
Run the WinPcap installer and allow to start on boot

WpdPack

The last test by NCID Developers was using WinPcap_4_1_3.exe and WpdPack_4_1_2.zip .

Install WinPcap from windows if using the sip2ncid gateway:

if compiling ncid from source you also need to:

https://www.winpcap.org/
https://www.winpcap.org/devel.htm

download the latest WpdPack zip file
unzip the WpdPack zip file to create the WpdPack directory

CONFIGURATION:

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the sip2ncid gateway to handle Caller ID from
VoIP. No need to configure ncidd.conf.

If you are not using a modem or serial device for Caller ID, you need to configure ncidd by changing this line in
ncidd.conf:

 From: # set cidinput = 3
 To: set cidinput = 3

If you are using a modem for hangup or to dial calls, you must have a modem connected to the same telephone
line as the telephone used to receive and make SIP calls, and you must configure ncidd by changing these lines
in ncidd.conf:

 From: # set cidinput = 2
 To: set cidinput = 2

 From: # set lineid = POTS
 To set lineid = <SIP lineid>

Notes:

the SIP lineid depends on the telephone line
see Note 1 for an explanation of cidinput

Once you change ncidd.conf, you must start/restart ncidd to read it.

Use the sip2ncid --listdevs or -l option to see your network devices:

 sudo sip2ncid --listdevs

EXAMPLE:

This ncidd.conf example is for SIP:

configured for phone number 786-555-1212
a modem connected to the same phone line as the telephone
automatic plane hangup on unwanted calls:

 set cidinput = 2
 set lineid = "1212"

TESTING:

To determine if you can receive any network packets, use the --testall or -T option:

 sudo sip2ncid --testall

https://www.winpcap.org/devel.htm

This will display a packet count and a packet type. It does not know all packet types so you may get some
UNKNOWN packet types. It also sets debug mode and verbose level 3. You can increase the verbose level to see
more detail, but if you decrease it below 3, you will not see any packets.

To determine if you can receive SIP data packets, use the --testsip or -t option:

 sudo sip2ncid --testsip

This will display SIP packets and what, if anything, it does. It also sets debug mode and verbose level 3. You can
also change the verbose level. If you set verbose to 1, sip2ncid will display lines sent to the server instead of the
packet contents:

 sudo sip2ncid -tv1

If no packets are received in about 45 seconds:

 No SIP packets at port XXXX in XX seconds

If sip2ncid terminates you should be able to see why and fix it.

You can get a detailed usage message by executing:

 sip2ncid --help

Sometimes it picks the wrong default interface. If you are using eth0:

 sudo sip2ncid -ti eth0

If you need to see what interfaces are present you can use the --interface or -i option:

 sudo sip2ncid --listdevs

The display is:

 <interface> : <description>

The interface name is everything up to the first space.

If you do not see any SIP packets, change to port 5061 and try again:

 sudo sip2ncid --testsip --sip :5061

You should see something like:

 Network Interface: eth0
 Filter: port 10000

Then about every 20 seconds you should see something like:

 Packet number 1:
 Protocol: UDP

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 70.119.157.214:10000;branch=z9hG4bK-22b185d1
 From: 321-555-7722
<sip:13215551212@atlas2.atlas.vonage.net:10000>;tag=46f26356c0a3394bo0

 To: 321-555-7722 <sip:13215551212@atlas2.atlas.vonage.net:10000>
 Call-ID: fa72d1c2-ead1bdcf@70.119.157.214
 CSeq: 86785 REGISTER
 Contact: 321-555-1212 <sip:13215551212@70.119.157.214:10000>;expires=20
 Content-Length: 0

 Registered Line Number: 13215551212

The Registered Line Number line will only appear in packet number 1.

If you do not get the above, you may need to specify an address and/or port for sip2ncid to listen for the SIP
Invite. You cannot continue unless you get the above.

If you are using the Linksys RT31P2 Router, you will not see any packets unless the computer is in its DMZ
(Demilitarized Zone). Port forwarding the UDP port will not work. You must set up the DMZ. If you are using a
different VoIP router, try to put the computer in the DMZ and see if that works. If not, view the SIP tutorial:

Configure your home network for SIP-based Caller ID (on the Wayback Machine).

Once you receive the above packets, call yourself. If you do not get a Caller ID message sent to ncidd, you should
get an error message saying what is wrong. This has been tested with Vonage and may need tweaking for other
VoIP service providers.

If you had Caller ID sent to a client, setup is complete. You can then restart sip2ncid without the test option so it
will not display anything. You can also set it up to start at boot, along with ncidd. If any options are needed at
boot, add them to sip2ncid.conf.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally sip2ncid is started using the provided init, service, rc, or plist script for your OS. For more information,
refer to the INSTALL section for your OS. If none is provided you need to start sip2ncid manually:

 sudo sip2ncid &

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to sip2ncid.conf.

If sip2ncid does not work, you should have enough information to ask for help.

wc2ncid setup

How to setup one or more Whozz Calling Ethernet Link (WC) devices for Caller ID using wc2ncid.

Sections:

REQUIREMENTS
CONFIGURATION
EXAMPLE
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

https://web.archive.org/web/20140417163015/http://www.files.davidlaporte.org/sipcallerid.html

REQUIREMENTS:

A Whozz Calling Ethernet Link (WC) device (see: https://callerid.com) connects to POTS (Plain Old Telephone
System) lines and can handle 2, 4, or 8 lines. Some models only handle incoming calls while others handle
incoming and outgoing calls.

The Whozz Calling user manual tells how to hook up the device. You plug your POTS telephone lines into the
device and you connect the device to your local network.

CONFIGURATION:

All WC devices must have an IP address within your network in order for them to be configured for use by
wc2ncid. This limitation will be removed in a future release. When you try to configure a device with an address
outside your network, wc2ncid will either give a warning or an error message and terminate. You can then use
the wct script to change the IP address to one that is in your network. Use the discover option of wct to locate
the device:

 wct --discover

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the wc2ncid gateway to handle Caller ID from
additional POTS or VoIP lines. No need to configure ncidd.conf.

If you are not using a modem or serial device for Caller ID, you need to configure ncidd by changing this line in
ncidd.conf:

 From: # set cidinput = 3
 To: set cidinput = 3

If you are using a modem for hangup or to dial calls, you must have a modem connected to the same telephone
line as the WC device, and you must configure ncidd by changing these lines in ncidd.conf:

 From: # set cidinput = 2
 To: set cidinput = 2

 From: # set lineid = POTS
 To set lineid = <WC lineid>

Notes:

the WC lineid is WC followed by 2 digits indicating the line input to the device
see Note 1 for an explanation of cidinput

Once you change ncidd.conf, you must start/restart ncidd to read it.

Next, edit wc2ncid.conf to configure one or more devices. Look for this line:

 wcaddr = 192.168.0.90

If your network is on 192.168.0 and the above address is not used, you can leave it. If your network is on
192.168.1 you can set the IP address for WC device number 1 (WC-1), for example, by changing the line to be:

 wcaddr = 192.168.1.90

https://callerid.com/

If you have 2 devices and want to use addresses 192.168.2.90 and 192.168.2.91, WC device 1 is 192.168.2.90 and
WC device 2 is 192.168.2.91.

 wcaddr = 192.168.2.90, 192.168.2.91

EXAMPLE:

This ncidd.conf example is for a WC device:

with a phone line connected to input 01
a modem connected to the same line input to the WC device
automatic plain hangup on unwanted calls

 set cidinput = 2
 set lineid = "WC01"

TESTING:

Once you set the IP address for the WC device in wc2ncid.conf, start wc2ncid and tell it to configure the WC
device:

 wc2ncid [--test] --set-wc

The --test parameter is optional, but it is a good idea to use it so wc2ncid does not connect to the NCID
server during the configuration process.

If you have 2 or more WC devices and they are both set to the same address or the factory default of
192.168.0.90, you need to change both addresses in wc2ncid.conf. For example:

 wcaddr = 192.168.0.91, 192.168.0.92

Turn on one device and execute:

 wc2ncid [--test] --set-wc

Terminate wc2ncid with <CTRL><C>. Leave the first device turned on, then turn on the second device and
execute:

 wc2ncid [--test] --set-wc

Both devices should be configured and operational. Terminate wc2ncid
with <CTRL><C>.

If this is the first time you set wc2ncid up, you should test wc2ncid without connecting it to the ncidd server:

 wc2ncid --test

The above command puts wc2ncid in test and debug modes at verbose level 3. It will display verbose statements
on the terminal, ending with "Waiting for calls". It should show the configured address for each device. Test
mode prevents wc2ncid from connecting with ncidd.

If wc2ncid terminates you should be able to see why and fix it.

You can get a detailed usage message by executing:

 wc2ncid --help

or print out the manual page by executing:

 wc2ncid --man

Call yourself. You should see more verbose messages as the call is processed. If it looks OK, terminate wc2ncid
with <CTRL><C>.

Next, restart wc2ncid in debug mode so it will connect to ncidd:

 wc2ncid -Dv3

Call yourself. If you do not get a Caller ID message sent to ncidd, you should get an error message saying what
is wrong.

If you had Caller ID sent to a client, setup is complete.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally wc2ncid is started using the provided init, service, rc, or plist script for your OS. For more information,
refer to the INSTALL section for your OS. If none is provided you need to start wc2ncid manually:

 sudo wc2ncid &

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to wc2ncid.conf.

If wc2ncid does not work, you should have enough information to ask for help.

xdmf2ncid setup

How to setup one or more CTI Comet USB devices or Holtek HT9032D based PSTN Caller ID modules for Caller ID
using xdmf2ncid.

Sections:

REQUIREMENTS
CONFIGURATION
EXAMPLE
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

The CTI Comet USB device and the Holtek HT9032D based PSTN Caller ID module connect to a POTS (Plain Old
Telephone System) lines to provide Caller ID on incoming calls.

CONFIGURATION:

https://www.crucible-technologies.co.uk/products/WEB-COMET
https://www.aliexpress.com/item/-/32807442435.html

Connect the CTI Comet USB to the computer using the supplied USB cable or connect the Holtek HT9032D based
PSTN Caller ID module to the computer using the USB to UART TTL cable adapter and then connect the CTI
Comet USB or the Holtek HT9032D based PSTN Caller ID module to the telephone line using the remaining cable.

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the xdmf2ncid gateway to handle an additional
POTS or VoIP line. No need to configure ncidd.conf.

If you are not using a modem or serial device for Caller ID, you need to configure ncidd by changing this line in
ncidd.conf:

 From: # set cidinput = 3
 To: set cidinput = 3

If you are using a modem for hangup or to dial calls, you must have a modem connected to the same telephone
line as the device connected to xdmf2ncid, and you must configure ncidd by changing these lines in ncidd.conf:

 From: # set cidinput = 2
 To: set cidinput = 2

 From: # set lineid = POTS
 To set lineid = <device name>

Notes:

the xdmf2ncid lineid is the device name
see Note 1 for an explanation of cidinput

Once you change ncidd.conf, you must start/restart ncidd to read it.

Next, edit xdmf2ncid.conf to configure the USB port used by the CTI Comet USB or the Holtek HT9032D based
PSTN Caller ID module. Uncomment the line and change the USB port. For Linux systems, ttyUSB? is normally
used where USB? is USB0, USB1, USB2, or USB3.

For example, to configure for USB1 uncomment this line:

 From: #usbport = /dev/ttyUSB1
 To: usbport = /dev/ttyUSB1

You may need to change other settings in xdmf2ncid.conf. For instance, the configuration assumes ncidd is
running on the same computer using its default port. If using the Holtek HT9032D based PSTN Caller ID module,
set ht9032 = 1.

EXAMPLE:

This ncidd.conf example is for the CTI Comet USB or the Holtek HT9032D based PSTN Caller ID module:

connected to /dev/CometUSB0 or /dev/HoltekUSB0
a modem connected to the same phone line connected to the CTI Comet USB device or the Holtek
HT9032D based PSTN Caller ID module
automatic plain hangup on unwanted calls

 # CTI Comet USB:

 set cidinput = 2
 set lineid = "CometUSB0"

 # Holtek HT9032D based PSTN Caller ID module:
 set cidinput = 2
 set lineid = "HoltekUSB0"

TESTING:

Once you set the USB port for the CTI Comet USB device or the Holtek HT9032D based PSTN Caller ID module in
xdmf2ncid.conf, start xdmf2ncid:

 xdmf2ncid [--test]

The --test parameter is optional, but it is a good idea to use it so that xdmf2ncid does not connect to the
NCID server during the configuration process. You'll want to use the parameter if this is the first time you are
setting xdmf2ncid up:

 xdmf2ncid --test

The above command puts xdmf2ncid in test and debug modes at verbose level 3. It will display verbose
statements on the terminal, ending with "Waiting for calls". It should show the USB port for the device.

If xdmf2ncid terminates you should be able to see why and fix it.

You can get a detailed usage message by executing:

 xdmf2ncid --help

or print out the manual page by executing:

 xdmf2ncid --man

Call yourself. You should see more verbose messages as the call is processed. If it looks OK, terminate xdmf2ncid
with <CTRL><C>.

Next, restart xdmf2ncid in debug mode so it will connect to ncidd:

 xdmf2ncid -Dv3

Call yourself. If you do not get a Caller ID message sent to ncidd, you should get an error message saying what
is wrong.

If you had Caller ID sent to a client, setup is complete.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally xdmf2ncid is started using the provided init, service, rc, or plist script for your OS. For more
information, refer to the INSTALL section for your OS. If none is provided you need to start xdmf2ncid manually:

 sudo xdmf2ncid &

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to xdmf2ncid.conf.

If xdmf2ncid does not work, you should have enough information to ask for help.

yac2ncid setup

How to setup a YAC modem server for Caller ID using yac2ncid.

Sections:

REQUIREMENTS
CONFIGURATION
TESTING
START/STOP/RESTART/STATUS/AUTOSTART

REQUIREMENTS:

A YAC server on a Windows computer running Microsoft Windows 98 or later.

The YAC server has not been updated since approximately 2002. You can download it from a saved site copy at
the Internet Archive's Wayback Machine, or from any of several global download sites such as
https://yac.software.informer.com/. Follow the installation instructions.

CONFIGURATION:

Configure the YAC server by giving it the IP address where ncidd is running. Do this by right-clicking the YAC icon
in the System Tray and then select "Listeners...".

The ncidd server defaults to using a modem and optional gateways to get Caller ID. If you are using a modem
for Caller ID on a POTS (standard telephone) line, you can use the yac2ncid gateway to handle an additional
POTS line. No need to configure ncidd.conf.

If you do not use a modem or serial device for Caller ID, you need to configure ncidd by changing this line in
ncidd.conf:

 From: # set cidinput = 3
 To: set cidinput = 3

Hangup is not supported for Caller ID from the yac2ncid gateway.

Once you change ncidd.conf, you must start/restart ncidd to read it.

(Note: See Note 1 for an explanation of cidinput)

Normally yac2ncid does not need to be configured, but you should review yac2ncid.conf to see if you want to
change any of its defaults.

After modifying ncidd.conf and yac2ncid.conf, you must start/restart ncidd first and then the yac2ncid
gateway.

TESTING:

Make sure the YAC server is running on the Windows computer.

https://web.archive.org/web/20160824011700/https://www.sunflowerhead.com/software/yac/
https://yac.software.informer.com/

Run the yac2ncid gateway with the verbose option:

 yac2ncid -v

Call yourself. If you do not get a Caller ID message sent to ncidd, you should get an error message saying what
is wrong.

If you had Caller ID sent to a client, setup is complete. You can then restart yac2ncid without the verbose option
so it will not display anything. You can also set it up to start at boot, along with ncidd.

START/STOP/RESTART/STATUS/AUTOSTART:

Normally yac2ncid is started using the provided init, service, rc, or plist script for your OS. For more information,
refer to the INSTALL section for your OS. If none is provided you need to start yac2ncid manually:

 sudo yac2ncid &

You can also set it up to start at boot, along with ncidd. If any options are needed, add them to yac2ncid.conf.

If yac2ncid does not work, you should have enough information to ask for help.

Note 1:

In ncidd.conf cidinput specifies the Caller ID input:

cidinput value description

0 Caller ID from a modem and optional gateways

1 Caller ID from a serial or USB device and optional gateways

2 Caller ID from a gateway with modem support

3 Caller ID from gateways without modem support

A list of serial devices working with NCID can be found in the Devices Supported section.

Supported Clients

Table of Contents

Clients Index

Overview
ncid
NCIDpop
NCID Android
LCDncid
NCIDdisplay

Overview

The primary NCID distribution includes one "universal" Graphical User Interface (GUI) client that runs under the
Unix scripting language called Wish (Windowing Shell). In addition, there are four optional clients, available as
separate downloads, all of which are actively maintained by the NCID Development Team.

There is a 3rd Party Addons page that links to clients, gateways and related NCID projects by other developers
and users. Contact us with a URL showing your project and we will provide a link to it.

The five clients are ncid, NCIDpop, NCID Android, LCDncid and NCIDdisplay.

ncid

The ncid client is cross-platform for Linux, Mac OSX and Windows. It is included with the NCID distribution.
The Windows version can only run the client without output modules.

Description, Features and Screenshots

Basic steps for starting the client:

Make sure a window manager is running (e.g., X-Windows).

Launch a graphical Terminal application (e.g., xterm).

Make sure ncidd is running.

To run ncid on the same computer as ncidd , at the Unix shell prompt, type in:

ncid &

To run ncid on a different computer, specify the hostname or IP address of the ncidd computer:

ncid 192.168.1.5 &

NCIDpop

https://ncid.sourceforge.io/addon.html
https://ncid.sourceforge.io/ncid/features.html#ncid_client
https://ncid.sourceforge.io/ncid/screenshots.html

NCIDpop is an optional cross-platform popup client for Linux, Mac OSX and Windows.

Description, Features and Screenshots

Basic steps for starting the client:

Click on the NCIDpop program icon.

The first time NCIDpop runs it should take you to the General tab on the Preferences window.

In the Server Settings box, type the hostname or IP address of the NCID server, e.g., 192.168.1.5.

Click the Set button.

NCID Android

https://ncid.sourceforge.io/ncidpop/ncidpop.html

NCID Android is an optional client for Android running on smartphones, tablets and Android TV devices.

Description, Features and Screenshots

Basic steps for starting the client:

Tap the NCID Android program icon.

The first time NCID Android runs it should take you to the Preferences window.

Tap Server Settings.
Tap Hostname and type the hostname or IP address of the NCID server, e.g., 192.168.1.5.

Tap the OK button.

https://ncid.sourceforge.io/ncidandroid/ncidandroid.html

Click on the BACK button until you get back to the screen showing Calls and Messages.

LCDncid

LCDncid is an optional client that requires an LCD module connected to a Raspberry Pi or other computer.

Description, Features and Screenshots

Basic steps for starting the client:

You can run the NCID server and LCDncid client on the same device; the configuration file lcdncid.conf
should have suitable defaults already.

If the LCDncid client is not running on the same device as the NCID server, you'll need to edit
lcdncid.conf and set the ncidhost variable to the hostname or IP address, e.g.:

ncidhost = 192.168.1.5

NCIDdisplay

NCIDdisplay is an optional giant (3"x18"!) homebrew LED display made up of at least 4 LCD modules.

Description, Features and Screenshots

Basic steps for starting the client:

https://ncid.sourceforge.io/lcdncid/lcdncid.html
https://ncid.sourceforge.io/nciddisplay/nciddisplay.html

NCIDdisplay is more involved than the other clients listed above because it requires the completion of
its build-it-yourself hardware project.

When properly built, NCIDdisplay will run by simply powering it on.

Client Output Modules

Table of Contents

Description

Usage

Description

The ncid client supports output modules.

An output module receives the Caller ID information from the ncid client and gives the client new functionality.
For example, one module sends the Caller ID or message to a smart phone as an SMS message or sends it as an
email message. Another module speaks the Caller ID or message.

There are various output modules included with NCID. See the ncid_modules man page for a current list of the
distributed modules. Each module is described in the man pages.

There are also third party client modules. Some third party modules can be found at NCID Addons.

Usage

Modules are called by the client using a command line of this form:

 ncid --no-gui --module ncid-<name>

Most modules have a configuration file normally at /etc/ncid/conf.d:

 /etc/ncid/conf.d/ncid-<name>.conf

As an example, if the <name> is page and you want to run the command in the background, then the command
line would be:

 ncid --no-gui --module ncid-page &

All distributed modules have a boot script that contains the proper command line to start and stop the module
as well as giving its status. The boot scripts differ by operating systems. See the INSTALL document for more
information on this for your operating system.

The boot script name is always the same name as the module name. Use the AUTOSTART link for your operating
system on how to start the module at boot. Use the START/STOP/RESTART/RELOAD/STATUS link for how to start
and stop the module. Normally you would enable the module to start at boot after you configure it.

Fedora: AUTOSTART START/STOP/RESTART/RELOAD/STATUS

FreeBSD: AUTOSTART START/STOP/RESTART/RELOAD/STATUS

Macintosh OSX: (AUTO)START/STOP

https://ncid.sourceforge.io/man/ncid_modules.7.html
https://ncid.sourceforge.io/man/man.html
https://ncid.sourceforge.io/addon.html
https://ncid.sourceforge.io/doc/NCID-UserManual.html#install_top
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_fed_as
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_fed_ss
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_free_as
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_free_ss
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_mac_ss

raspios: AUTOSTART START/STOP/RESTART/RELOAD/STATUS

Redhat: AUTOSTART START/STOP/RESTART/RELOAD/STATUS

Ubuntu: AUTOSTART START/STOP/RESTART/RELOAD/STATUS

Using NCID

Table of Contents

Description

Description

NCID's main job is to display the Caller ID on multiple devices, but it has advanced features.

NCID can send and receive one line messages. It can also forward a message through a gateway. Review the
Messages section for more information.

NCID can give the caller a new name, called an alias. It can do the same with the caller's number or the line of
the received call. Review the Alias section for more information.

NCID can automatically hang up on the caller if the number or name is entered into its blacklist. Review the
Hangup section for more information.

NCID can execute a hangup extension as another way to determine if it should hangup on a call. Review the
Server Extensions section for more information.

NCID provides the ncidd.alias, ncidd.blacklist and ncidd.whitelist configuration files. The cidalias tool views alias
definitions in the NCID alias, blacklist and whitelist files. The ncidutil tool modifies the ncidd.alias, ncidd.blacklist
and ncidd.whitelist files. The cidupdate tool updates the current call log file using entries found in the alias file.
Review the Command Line Tools section for more information.

NCID provides a call log in the /var/log/cidcall.log file for calls and messages. It is processed each month if the
operating system uses logrotate for the system log files. The cidcall tool is used to view the logfile.

If configured, NCID also provides yearly call logs in the $HOME/NCID/log/cidcall-<year>.log files. Use the cidcall
tool to view a yearly log file. Review the Log Files section for more information.

Messages
Aliases
Hangup
Server Extensions
Command Line Tools
CallerID Blacklist from FCC Data
Enforcing the North American Numbering Plan
Log Files

NCID Messages

Table of Contents

Description

Description

https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_rasp_as
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_rasp_ss
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_red_as
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_red_ss
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_ubuntu_as
https://ncid.sourceforge.io/doc/NCID-UserManual.html#instl_ubuntu_ss
https://ncid.sourceforge.io/man/cidalias.1.html
https://ncid.sourceforge.io/man/ncidutil.1.html
https://ncid.sourceforge.io/man/cidupdate.1.html
https://ncid.sourceforge.io/man/cidcall.1.html
https://ncid.sourceforge.io/man/cidcall.1.html

NCID supports three different types of messages. All messages must be a single line. All messages must begin
with either a MSG:, NOT:, or RLY: label.

MSG:

The server accepts a single line text message from a client and broadcasts it to all connected clients. All
messages must begin with the MSG: label.

Gateways can send MSG: lines, too. For example, ncid2ncid will send MSG: lines to indicate the connection
status as it passes caller ID data between two or more NCID servers.

Programs external to NCID, such as netcat (a.k.a. nc and ncat), can be used to send a message. Telnet is not
recommended. If netcat is used, please note there are different versions with different options.

This shell script example creates a 10 minute food timer. The -w1 is a one second idle timeout to wait before
disconnect:

sleep 600; echo "MSG: Food Ready" | nc -w1 localhost 3333 > /dev/null

An equivalent batch file using netcat for Windows would be:

CHOICE /T 600 /C AB /N /D A > NUL echo MSG: Food Ready | nc -w1 192.168.1.100
3333 > NUL

Note: The recommended netcat version for Windows is the security-safe version by Jon Craton. It is
available for download from his website here. When extracting, use the password "nc" (without quotes).

You can send a HELLO: CMD: no_log line prior to a MSG: line. This can improve performance because it
forces the server not to send the call log before processing the MSG:.

Unix:

sleep 600; echo -e "HELLO: IDENT: client food timer 1.1\nHELLO: CMD: no_log\nMSG:

Food Ready" | nc -w1 localhost 3333 > /dev/null

Windows batch file:

CHOICE /T 600 /C AB /N /D A > NUL (echo HELLO: IDENT: client food timer 1.1&echo
HELLO: CMD: no_log&echo MSG: Food Ready) | nc -w1 192.168.1.100 3333 > NUL

NOT:

Utilizing the same format as MSG:, when a smartphone gateway (e.g., NCID Android) sends a copy of an SMS
text message received or sent by a smartphone, it uses the NOT: line label.

RLY:

When a client (e.g., NCIDpop) sends a message to be forwarded over the cellular network, it uses the RLY:
label to send it to a smartphone gateway (e.g., NCID Android). It uses a very different format compared to
MSG: and NOT:.

Aliases

Table of Contents

https://joncraton.org/files/nc111nt_safe.zip

Alias Index

Alias Overview
Alias Types

number alias
name alias
number & name alias
number if name alias
name if number alias
line alias

Alias Expressions

Alias Overview

The name, number and telephone line of a call are checked for an alias. If a match is found it will be replaced by
its alias before the call is added to the call log and before the call information is sent to the clients.

There are two types of aliases; built-in alias and user defined alias.

The built-in alias only converts the letter A to ANONYMOUS, the letter O to OUT_OF_AREA and the letter P to
PRIVATE. The built-in aliases can not be modified but a built-in alias can be changed with a user defined alias.

The user defined aliases are defined in the ncidd.alias file.

A leading # is allowed in a name or number provided it is enclosed in double quotes. Sometimes a spoofed
number starts with one or more # to prevent it from being blacklisted.

Alias names can be a maximum of 50 characters.

You can manually edit the ncidd.alias file to create, edit, or remove entries using an editor.

When the alias file is modified, ncidd needs to be informed. It will reload the alias table when it receives a
SIGHUP signal.

One way to send the reload signal to ncidd:

pkill --signal SIGHUP ncidd

You can also just restart ncidd.

Aliases can also be created, edited, or removed by these NCID clients. They provide ways to force the server to
reload the alias table.

ncid
NCIDpop
NCID Android Alias maintenance not available

In addition, when running the NCID server in the US or Canada, the ignore1 option can be set in ncidd.conf to
ignore a leading 1 in the Caller ID number or the alias number.

Alias Types

The three general formats for entries in ncidd.alias are:

alias "received data" = "replacement data"

alias "TYPE" "received data" = "replacement data"
alias "TYPE" "*" = "replacement data" if "depends"

Where:

TYPE is NAME, NMBR, or LINE
received data or depends is the name or number to change to an alias
replacement data is the alias

When TYPE is NAME and depends is present:

depends is the received number to match against when setting the alias to be replacement name. The
position normally used for received data must be an *.

When TYPE is NMBR and depends is present:

depends is the received name to match against when changing received number to replacement
number. The position normally used for received data must be an *.

When TYPE is missing, the NMBRNAME rule applies:

if received number matches received data, it will be changed to replacement data

...and/or...

if received name matches received data, it will be changed to replacement data

The three general formats allow for six types of aliases:

Type Format

number alias NMBR "received number" = "replacement number"

name alias NAME "received name" = "replacement name"

number & name alias "received data" = "replacement data"

number if name alias NMBR = "*" = "replacement number" if "depends"

name if number alias NAME = "*" = "replacement name" if "depends"

lineid alias LINE = "received call lineid" = "replacement lineid"

Number Alias

The number alias changes the number of the caller to an alias. The number can be a word.

Format: alias NMBR "received number" = "replacement number"

Example: alias NMBR "4075550000" = "4075551212"

Name Alias

The name alias changes the name of the caller to an alias.

Format: alias NAME "received name" = "replacement name"

Example: alias NAME "John Bright" = "Big Bad John"

Number and Name Alias

The number and name alias checks both the caller number and caller name for a match. If either matches, it is
replaced by the alias.

This alias type is useful when both the name and number are the same. For example, if the name and number
are both "OUT-OF-AREA".

Another use is if you do not care if the string you are looking for is a name or number. You want it replaced if it is
either a name or number.

Format: alias "received data" = "replacement data"

Example: alias "OUT-OF-AREA" = "UNAVAILABLE"

Number if Name Alias

The number if name alias changes the number of the caller if the name matches depends. Quotes around the
"*" are optional.

Format alias NMBR "*" = "replacement number" if "depends"

Example: alias NMBR * = "secret" if "Bond James"

Name if Number Alias

The name if number alias is the most popular alias. It changes the name of the caller if the number matches
depends. Quotes around the "*" are optional.

Format alias NAME "*" = "replacement name" if "depends"

Example: alias NAME * = "john on cell" if "4075556767"

Line Alias

The line alias changes the telephone line tag to an alias.

Format alias LINE "received call lineid" = "replacement lineid"

Example: alias LINE "-" = "POTS"

Alias Expressions

Simple expressions (set regex = 0 in ncidd.conf)

These are permitted in either:

the depends section of an alias line

...or...

the received data section, if the alias line does not contain depends

The allowed expressions are:

received data and depends can contain a ^ or * or 1? at the beginning:

^ = partial match from beginning
* = partial match after the *
^1? = optional leading 1 for US/Canada numbers

received data and depends can contain an * at the end:

* = partial match from beginning to before the *

received data and depends can contain an $ at the end:

$ = partial match tied to the end e.g. "* FL$" will match "MIAMI FL"

received data can contain a single * to match anything

Regular Expressions (set regex = 1 in ncidd.conf)

They are used in place of Simple Expressions. The syntax for Simple Expressions is not compatible with
Regular Expressions except for ^, ^1? and 1?.

The POSIX Extended Regular Expression syntax is used. It is a section in Regular Expression.

If you are new to Regular Expressions, see Regular-Expressions info for an introduction.

Perl-compatible Regular Expressions (set regex = 2 in ncidd.conf)

They are used in place of Simple Expressions. The syntax for Simple Expressions is not compatible with Perl-
compatible Regular Expressions except for ^, ^1? and 1?.

This PCRE Regex Cheatsheet may be helpful.

Hangup

Table of Contents

Hangup Index

Hangup Overview
Modem Configuration
Hangup Choices

Normal Hangup
Fax Hangup
Announce Hangup

Blacklist and Alias Files Usage
Whitelist File Usage
Alias, Blacklist and Whitelist Simple Expressions
Alias, Blacklist and Whitelist Regular Expressions

Hangup Appendix A: Server Log File Sample
Hangup Appendix B: Creating a Voice File from Scratch
Hangup Appendix C: Raw Modem Data Formats
Hangup Appendix D: Modem AT+VSM Command Explained

Hangup Overview

https://en.wikipedia.org/wiki/Regular_expression#POSIX_basic_and_extended
https://en.wikipedia.org/wiki/Regular_expression
https://www.regular-expressions.info/quickstart.html
https://www.debuggex.com/cheatsheet/regex/pcre

Hangup (a.k.a. call termination) is disabled/enabled by settings in the server configuration file ncidd.conf. It
requires a modem to be connected to the phone line so it can pickup and hangup the line.

At a high-level, there are two sets of procedures available to hangup calls. Both are optional and one or both can
be enabled at the same time. They are:

Internal Hangup. This is built in to the NCID server and uses the ncidd.blacklist and ncidd.whitelist
files.

Hangup Extension. This lets you use an external script or program. The ncidd.whitelist file is used to
determine if the hangup script is called.

When Caller ID is received from a modem, the following steps take place and in this order:

The server looks for matching data in the optional alias file. This can result in the Caller ID name
and/or number being changed.

The server looks for matching data in the optional whitelist file. The data must be an alias, or if there is
no alias for the call, it must be from the Caller ID. If there is a match then no hangup takes place.

The server looks for matching data in the blacklist file. The data must be an alias, or if there is no alias
for the call, it must be from the Caller ID. If there is a match, hangup is automatic.

With the hupmode option, the server calls the external hangup extension. If the extension returns
"hangup", hangup is automatic.

You can manually edit the blacklist and whitelist files to create, edit, or remove entries using an editor.

When either file is modified, ncidd needs to be informed. It will reload the blacklist and whitelist tables when it
receives a SIGHUP signal.

One way to send the reload signal to ncidd:

sudo pkill --signal SIGHUP ncidd

You can also just restart ncidd.

The blacklist and whitelist entries can also be created or removed by the following NCID clients. They provide
ways to force the server to reload the tables:

ncid
NCIDpop
NCID Android

In addition, when running the NCID server in the US or Canada, the ignore1 option can be set in ncidd.conf to
ignore a leading 1 in the Caller ID, alias, blacklist, or whitelist.

Modem Configuration

A modem is required to hangup the line. Hangup is enabled and configured in ncidd.conf by the hangup
variable.

Hangup is disabled by default, with and without a configuration file. Hangup can also be disabled by the line:

set hangup = 0

You may also need to set the ttyport variable if the correct one is not set in ncidd.conf. For example, using
Linux:

set ttyport = /dev/ttyACM0

The location of ncidd.conf will vary depending on the operating system. It is typically found in either /etc/ncid/
or /usr/local/etc/ncid/. The ncidd.conf file location is also shown in /var/log/ncidd.log when ncidd starts. If
ncidd.conf is missing, ncidd.log will have an appropriate message.

Announce Hangup has some additional requirements for modem configuration.

Hangup Choices

If enabled, there are three types of hangups:

Normal Hangup - requires a modem that supports Caller ID
FAX Hangup - requires a modem that supports Caller ID and FAX
Announce Hangup - requires a modem that supports Caller ID, VOICE and hardware flow control

If the type of hangup is not supported by the modem, ncidd will change the hangup to Normal Hangup.

Normal Hangup

A normal hangup is configured in ncidd.conf by the line:

set hangup = 1

When ncidd receives a blacklisted Caller ID, it will immediately hangup.

FAX Hangup

A FAX hangup will generate a FAX tone for 10 seconds and then hangup. It is configured in ncidd.conf by the
line:

set hangup = 2

Not all FAX modems are supported. If no FAX tones are generated, set pickup to 0 in ncidd.conf. It is usually
needed for older modems.

set pickup = 0

After changing the pickup value, if it still does not work then the modem is not supported for FAX Hangup by
ncidd.

Announce Hangup

Announce Hangup will play a recorded message and then hangup.

Configuration
Voice Files

CX93001 Chipset Voice Files
US Robotics USR5637 Voice Files
Creating a Voice File from Scratch

Configuration

Modem

Make sure the modem supports hardware flow control and that it is enabled. Look for the line Modem
ACTIVE PROFILE: in ncidd.log. For most modems, hardware flow control is indicated by the presence of
&K3 in the profile. You may need to set &K3 in the active profile. If &K (or whatever is appropriate for
your modem) is not returned, then the modem is not supported by NCID.

ncidd.conf

Announce Hangup is configured by the line:

set hangup = 3

In addition, two other variables, announce and audiofmt, are used to configure the announcement
file. For example:

set announce = DisconnectedNotInService.rmd set audiofmt = "AT+VSM=130"

If the announcement file is missing, ncidd will change Announce Hangup to Normal Hangup. This
will be indicated in ncidd.log.

The default voice file is for 8-bit unsigned PCM at an 8000 Hz sample rate. It also seems to work for
8-bit LINEAR at an 8000 Hz sample rate.

The audiofmt variable determines the voice file's compression method and sampling rate. The
shorthand for this is Voice Sampling Method or VSM.

Voice Files

CX93001 Chipset Voice Files

The default voice file supplied, DisconnectedNotInService.rmd, works for modems that use the
CX93001 chipset. See the Incomplete list of working modems for known modems that use this
chipset.

Variable audiofmt defaults to AT+VSM=130 to work with this chipset.

US Robotics USR5637 Voice Files

The default voice file will also work with the US Robotics USR5637 modem, but it must have
firmware 1.2.23 or newer and audiofmt must be changed.

To check the firmware level, examine ncidd.log for this line:

Modem Identifier: U.S. Robotics 56K FAX USB V1.2.23

If you need to upgrade the firmware, download it from the US Robotics USR5637 support page.

The VSM line used is

128,"8-BIT LINEAR",(7200,8000,11025)

It has () around the supported voice sampling rates with three choices. You need to select 8000 for
use with the default DisconnectedNotInService.rmd file. Make the following change in ncidd.conf:

set audiofmt = "AT+VSM=128,8000"

Creating a Voice File from Scratch

https://en.wikipedia.org/wiki/Network_Caller_ID
https://support.usr.com/support/product-template.asp?prod=5637

This is a rather lengthy procedure so we have dedicated Hangup Appendix B: Creating a Voice File from
Scratch to this topic.

Blacklist and Alias Files Usage

File ncidd.blacklist is a list of names and/or numbers that will be terminated using one of the Hangup Choices
above. By making use of expressions and wildcards, you can achieve more complex matching logic with even
fewer entries in the blacklist. See the the ncidd.blacklist.5 man page for more info.

Comments are supported and must begin with a #. Comments can be an entire line, or a comment can be at the
end of an entry line.

A leading # is allowed in a name or number provided it is enclosed in double quotes. Sometimes a spoofed
number starts with one or more # to prevent it from being blacklisted.

Beginning with NCID version 1.3, a match name is a special kind of comment that replaces the caller name or
alias when it matches an entry in either the blacklist or whitelist. It can only be at the end of an entry line and
must begin with #=.

All phone numbers below are intended to be fictitious.

Method 1: Using only blacklist file entries

ncidd.blacklist Optional Comment

2125550163 # Free home security system

2265196565

2145559648 # Win a free cruise

3402090504

8772954057 # Acme Market Research

9792201894 # Political survey

"#########8" # The quotes are required

Method 2: Using multiple alias entries and one blacklist entry

When a call comes in, NCID will apply any alias transformations before checking the blacklist file. You can
use this to your advantage to simplify the number of entries needed in ncidd.blacklist. Another advantage
this gives you is that NCID clients (e.g., NCIDpop) will show the caller name as TELEMARKETER to indicate the
reason for the hangup.

ncidd.alias Matching phone#

alias NAME * = "TELEMARKETER" if 2125550163

alias NAME * = "TELEMARKETER" if 2265196565

alias NAME * = "TELEMARKETER" if 2145559648

alias NAME * = "TELEMARKETER" if 3402090504

https://ncid.sourceforge.io/man/ncidd.blacklist.5.html

alias NAME * = "TELEMARKETER" if 8772954057

alias NAME * = "TELEMARKETER" if 9792201894

ncidd.blacklist

“TELEMARKETER”

Method 3: Using only blacklist file entries with a match name

Beginning with NCID version 1.3, Method 2 can be simplified further by using the blacklist line comment
field to be a match name. This behaves like an alias but you don't need to make entries in ncidd.alias. The
trick is to use the two characters #= as a special comment line. Spaces are optional between #= and the
match name.

The blacklist match name overrides the incoming caller ID name and any ncidd.alias match that might
exist.

ncidd.blacklist Match Name in Comment

2125550163 #= Free home security system

2265196565 #= TELEMARKETER

2145559648 #= Win a free cruise

3402090504 #= TELEMARKETER

8772954057 #= Acme Market Research

9792201894 #= Political survey

"#########8" #= Tried to avoid the blacklist

Whitelist File Usage

File ncidd.whitelist is a list of names and/or numbers that will prevent a blacklist entry from causing a hangup.
By making use of expressions and wildcards, you can achieve more complex matching logic with even fewer
entries in the whitelist. See the ncidd.whitelist.5 man page for more info.

Comments are supported and must begin with a #. Comments can be an entire line, or a comment can be at the
end of an entry line.

A leading # is allowed in a name or number provided it is enclosed in double quotes, just like in the blacklist.

The whitelist match name is entered the same way as a blacklist match name, using #=.

The whitelist match name overrides the incoming Caller ID name and any ncidd.alias match that might exist.

This example shows how to blacklist an entire area code while allowing specific numbers. It also shows how to
indicate when there is a match in the whitelist.

https://ncid.sourceforge.io/man/ncidd.whitelist.5.html

ncidd.blacklist Match Name in Comment

^999 #= Blacklist area code 999

^998 #= Blacklist area code 998

ncidd.whitelist Match Name in Comment

9995556732 #= WHT 999-555-6732

9985550000 #= WHT James Bond

Alias, Blacklist and Whitelist Simple Expressions

The Blacklist and Whitelist can have either Simple Expressions or Regular Expressions (but not both) for an entry.

In addition, when running the NCID server in the US or Canada, the ignore1 option can be set in ncidd.conf to
ignore a leading 1 in the Caller ID, alias, blacklist, or whitelist.

Simple Expressions (set regex = 0 in ncidd.conf):

^ = partial match from beginning
1? = optional leading 1 (for US/Canada numbers)

Alias, Blacklist and Whitelist Regular Expressions

Regular Expressions are used in place of Simple Expressions. The syntax for Simple Expressions is not compatible
with Regular Expressions except for ^, ^1? and 1?.

If you are new to Regular Expressions, see Regular-Expressions.info for an introduction or a Regular Expressions
Tutorial.

Posix Regular Expressions (set regex = 1 in ncidd.conf):

The POSIX Extended Regular Expression syntax is used.
It is a section in Regular Expression.

You can also refer to the Quick-Start: Regex Cheat Sheet

Perl-compatible Regular Expressions (set regex = 2 in ncidd.conf):

The Perl-compatible regular expression syntax is used.

You can also refer to the PCRE Regex Cheatsheet

Hangup Appendix A: Server Log File Sample

The ncidd.log is useful for indicating ncidd configuration settings, modem features, modem settings and
debugging information.

This is a portion of the output for a tty port and an LB LINK USB Modem. The output is at the default verbose 1
level. It is useful for reviewing the tty port parameters, the modem identifier, country code, Voice Sampling
Methods supported, the VSM selected and the setting of the hangup option:

https://www.regular-expressions.info/quickstart.html
https://www.regular-expressions.info/tutorial.html
https://en.wikipedia.org/wiki/Regular_expression#POSIX_basic_and_extended
https://en.wikipedia.org/wiki/Regular_expression
https://www.rexegg.com/regex-quickstart.html
https://www.debuggex.com/cheatsheet/regex/pcre
https://www.debuggex.com/cheatsheet/regex/pcre

TTY port opened: /dev/ttyACM0
TTY port speed: 115200
TTY lock file: /var/lock/lockdev/LCK..ttyACM0
TTY port control signals enabled
Caller ID from a modem and optional gateways
Handles modem calls without Caller ID
Modem initialized.
Modem Identifier: CX93001-EIS_V0.2013-V92
Modem country code: B5 United States
Modem ACTIVE PROFILE:
B1 E1 L2 M1 N0 Q0 T V1 W0 X4 Y0 &C1 &D2 &G0 &J0 &K3 &Q5 &R1 &S0 &T5 &X0
S00:0 S01:0 S02:43 S03:13 S04:10 S05:8 S06:2 S07:50 S08:1 S09:6
S10:14 S11:85 S12:50 S18:0 S25:5 S26:1 S36:7 S38:20 S46:138 S48:7
S95:0
Modem supports Data Mode
Modem supports FAX Mode 1
Modem supports FAX Mode 2
Modem supports VOICE Mode
Hangup option = 3 - play an announcement then hangup on a blacklisted call
Internal Hangup recording file: /usr/share/ncid/recordings/DisconnectedNotInService.rmd
Manufacturer: CONEXANT
Modem Voice Sampling Methods:
0,"SIGNED PCM",8,0,8000,0,0
1,"UNSIGNED PCM",8,0,8000,0,0
129,"IMA ADPCM",4,0,8000,0,0
130,"UNSIGNED PCM",8,0,8000,0,0
131,"Mu-Law",8,0,8000,0,0
132,"A-Law",8,0,8000,0,0
133,"14 bit PCM",14,0,8000,0,0
Modem Voice Sampling Method selected: AT+VSM=130

Hangup Appendix B: Creating a Voice File from Scratch

You may wish to check the Network Caller ID page at Wikipedia to see if someone has already documented the
steps for your modem.

Prerequisites

This procedure uses Linux to convert the files.

The sox and mgetty-voice packages need to be installed.

An audio file, preferably one channel (mono), a sample rate of 8000 Hz (8 kHz) and a sample size of 8 bits.
This file can be either of the following:

An audio file in a format that sox supports. A .wav file is the most common. Sox does not support
.mp3 files.

A Portable Voice Format (.pvf) file. A few are supplied with NCID.

The chipset identifier returned by the modem's ATI3 response.

https://en.wikipedia.org/wiki/Network_Caller_ID

This will be in the startup section of /var/log/ncidd.log with the line, "Modem Identifier: ...".

The Voice Sampling Methods returned by the modem's AT+VSM=? response and the directory to store the
Raw Modem Data (.rmd) file.

These are both in the startup section of /var/log/ncidd.log where the lines start with, "Modem Voice
Sampling Methods: ..." and "Internal Hangup voice file: ...".

If you don't see these in the log file, you probably don't have Announce Hangup configured yet in
ncidd.conf. You can temporarily enable it by typing the following commands and then examine
ncidd.log:

 sudo pkill ncidd
 sudo ncidd -Dv1 -p 3334 -N1 -H3

Examine the Modem's Voice Sampling Methods (VSM)

Your ultimate goal in creating a custom voice file is to take a Portable Voice File (.pvf) and use the pvftormd
command line program to convert it to a Raw Modem Data (.rmd) file that is specific to your modem type
(chipset).

The tricky part is in trying find a compression method for pvftormd that is comparable to one of the Voice
Sampling Methods and codecs returned by the modem's (often cryptic) AT+VSM=? response. Compounding
the challenge are the facts that:

Different modem manufacturers often have their own codec naming convention when listing the
VSMs.

Determining which pvftormd modem type is a match for your modem is sometimes not obvious.

In the discussion below, we'll see examples of this challenge as we use one of the .pvf files supplied with
NCID to create the .rmd file that works on two different modem chipsets: Conexant CX93001 and USR5637.

Conexant CX93001

The pvftormd tool requires a modem type. The supported modem types and raw modem data formats are
listed with the -L option:

pvftormd -L

Refer to Hangup Appendix C: Raw Modem Data Formats. You'll notice that there's nothing listed in Column 1
that has "Conexant" as part of its name.

So what modem type was used to create the .rmd files supplied with NCID and why/how was it chosen? The
answer to the first part of the question is "V253modem" and the answer to the second part is "by
experimenting" (or perhaps, "luck").

If your modem isn't listed, which is highly likely, you have to start somewhere so try something for an 8 bit
PCM format:

V253modem 8 for linear unsigned PCM, or
V253modem 9 for linear signed PCM.

Next, you want to look at the modem's VSM info to see if you can find a match on 8 bit, linear, PCM, signed
or unsigned.

Here's the VSM info from ncidd.log for a modem with a Conexant CX93001 chipset:

 0,"SIGNED PCM",8,0,8000,0,0
 1,"UNSIGNED PCM",8,0,8000,0,0
 129,"IMA ADPCM",4,0,8000,0,0

 130,"UNSIGNED PCM",8,0,8000,0,0
 131,"Mu-Law",8,0,8000,0,0
 132,"A-Law",8,0,8000,0,0
 133,"14 bit PCM",14,0,8000,0,0

The line for 130 looks promising so we'll try that first. The line for 1 might also work since it "looks" the same
as line 130. Probably the only reason 130 was chosen is that users seem to have better luck with values 100
and greater.

In conclusion, we've decided to try these settings for the Conexant CX93001 chipset:

"V253modem 8" for the pvftormd tool to create the .rmd
"AT+VSM=130" as the audiofmt setting in ncidd.conf

USR5637

For the USR5637 chipset, it just so happens that trying the .rmd for the Conexant CX93001 chipset works just
fine, but it does require a different VSM setting. Looking at ncidd.log for this modem we see:

 128,"8-BIT LINEAR",(7200,8000,11025)
 129,"16-BIT LINEAR",(7200,8000,11025)
 130,"8-BIT ALAW",(8000)
 131,"8-BIT ULAW",(8000)

 132,"IMA ADPCM",(7200,8000,11025)

The Conexant CX93001 codec we picked to try was "UNSIGNED PCM" but as you can see, that's not an option
for the USR5637. We'll pick line 128, "8-BIT LINEAR" and hope it'll work.

A little more work needs to be done, though. The presence of the () for line 128 means we have to specify one
of the three sampling rates, but which one? Recall the line we used for the Conexant CX93001:

 130,"UNSIGNED PCM",8,0,8000,0,0

The sampling rate is fixed at 8000 so we'll try that for the USR5637.

In conclusion, we've decided to try these settings for the USR5637 chipset:

"V253modem 8" for the pvftormd tool to create the .rmd
"AT+VSM=128,8000" as the audiofmt setting in ncidd.conf

Creating a Portable Voice File (.pvf)

You would do the steps here if you want to use a .wav file or other audio file format supported by sox.

You can either record an announcement or download a .wav file from the internet. A good place to start is
This Is a Recording.

Once you have the .wav file, you need to convert it to a .pvf. We'll use the parameters listed under
Prerequisites: one channel (mono), a sample rate of 8000 Hz (8 kHz) and a sample size of 8 bits.

Assuming the file is called custom.wav:

sox custom.wav -t pvf -c 1 -r 8000 -b 8 custom.pvf

You can use the play command to listen to it:

play custom.pvf

Make sure the playback is clear and no spoken words get dropped. If the playback doesn't sound good as a
.pvf, it is probably not going to sound good when you convert it to an .rmd for playback through the
modem. You may need to use a different source .wav file and/or you'll need to experiment with the sox
parameters.

Note: It is probably not going to work very well if you try the the play command on a virtual Linux
machine because playing back audio can cause a performance hit on the virtual machine's CPU and
other resources. Instead, you will want to play it on a physical machine. As an alternative to the play
command, you could play it back using cross-platform versions of Audacity or VideoLAN.

Generally speaking, you only need to create a .pvf file once. It can then be used to create .rmd files for
multiple modem chipets.

If you need to examine the properties of a .pvf file, use the soxi tool:

$ soxi CallingDeposit.pvf
Input File : 'CallingDeposit.pvf'
Channels : 1

Sample Rate : 8000
Precision : 8-bit
Duration : 00:00:09.90 = 79203 samples ~ 742.528 CDDA sectors
File Size : 79.2k
Bit Rate : 64.0k
Sample Encoding: 8-bit Signed Integer PCM
$

Creating a Raw Modem Data (.rmd) File

Once you have a .pvf file, you must convert it to an .rmd that is specific for your modem's chipset.

Assuming the file is called custom.wav:

pvftormd V253modem 8 custom.pvf custom.rmd

The DisconnectedNotInService.pvf voice file was used to create DisconnectedNotInService.rmd. The .pvf
files for the distribution are in the documentation directory which is usually:

/usr/share/doc/ncid/recordings

or

https://www.thisisarecording.com/
https://www.audacityteam.org/
https://www.videolan.org/

/usr/local/share/doc/ncid/recordings

Use DisconnectedNotInService.pvf to create a raw modem data (.rmd) file for your modem if the default
one, DisconnectedNotInService.rmd, is not usable.

Convert it to .rmd:

pvftormd V253modem 8 DisconnectedNotInService.pvf
DisconnectedNotInService.rmd

If you need to examine the properties of an .rmd file, use the rmdfile tool:

$ rmdfile CallingDeposit.rmd
CallingDeposit.rmd: RMD1

modem type is: "V253modem"
compression method: 0x0008
sample speed: 8000
bits per sample: 8
$

Configuring NCID to use a Custom Voice File

Copy the custom .rmd file to the directory to store the Raw Modem Data (.rmd) file (see Prerequisites).

Edit ncidd.conf to enable Announce Hangup, indicate the name of the custom .rmd file and the AT+VSM
command to use.

Example:

set hangup = 3
set announce = custom.rmd

set audiofmt = "AT+VSM=128,8000"

Testing a Custom Voice File

The best way to test a custom voice file is to temporarily add your phone number to the blacklist file and call
yourself. Use a handset or headset to listen to the call and not speakerphone or handsfree mode.

If you experience any of the following, you will need to experiment with different parameters when running
pvftormd and/or different AT+VSM settings:

dropped spoken words or words that are completely unrecognizable
play back is too fast or too slow
you hear static noise

Hangup Appendix C: Raw Modem Data Formats

You would probably refer to this appendix only if you're using the Announce Hangup option.

The pvftormd command line program requires a modem type. The supported raw modem data formats are
listed with the -L option:

pvftormd -L

Column headings added to chart for readability:

1. Modem type or manufacturer.
2. One or more numbers representing different compression methods (these values are unique to

pvftormd and have no relation to a modem's compression number in its AT+VSM=? response).
3. Description of the compression method and usually lists the bit levels supported by pvftormd.

Output of pvftormd -L follows:

 pvftormd experimental test release 0.9.32 / with duplex patch

 supported raw modem data formats:

Column 1 Column 2 Column 3

Digi 4 G.711u PCM

Digi 5 G.711A PCM

Elsa 2, 3, 4 2/3/4-bit Rockwell ADPCM

ISDN4Linux 2, 3, 4 2/3/4-bit ZyXEL ADPCM

ISDN4Linux 5 G.711A PCM

ISDN4Linux 6 G.711u PCM

Lucent 1 8 bit linear PCM

Lucent 2 16 bit linear PCM

Lucent 3 G.711A PCM

Lucent 4 G.711u PCM

Lucent 5 4 bit IMA ADPCM

MT_2834 4 4 bit IMA ADPCM

MT_5634 4 bit IMA ADPCM

Rockwell 2, 3, 4 2/3/4-bit Rockwell ADPCM

Rockwell 8 8-bit Rockwell PCM

UMC 4 G.721 ADPCM

US_Robotics 1 USR-GSM

US_Robotics 4 G.721 ADPCM

V253modem 2, 4 2/4-bit Rockwell ADPCM

V253modem 5 4-bit IMA ADPCM

V253modem 6 G.711u PCM

V253modem 7 G.711A PCM

V253modem 8 8-bit linear unsigned PCM

V253modem 9 8-bit linear signed PCM

V253modem 12 16-bit linear signed PCM Intel Order

V253modem 13 16-bit linear unsigned PCM Intel Order

ZyXEL_1496 2, 3, 4 2/3/4-bit ZyXEL ADPCM

ZyXEL_2864 2, 3, 4 2/3/4-bit ZyXEL ADPCM

ZyXEL_2864 81 8-bit Rockwell PCM

ZyXEL_Omni56K 4 4-bit Digispeech ADPCM (?)

 example:

 pvftormd Rockwell 4 infile.pvf outfile.rmd

Hangup Appendix C: Modem AT+VSM Command Explained

Here is a breakdown of what each parameter means in the AT+VSM command:

 Command: AT+VSM=?
 Response: <cml>,<cmid>,<bps>,<tm>,<vsr>,<sds>,<sel>

 <cml> Decimal number identifying the compression method (1, 129,
 130, 140, or 141).

 <cmid> Alphanumeric string describing the compression method (UNSIGNED
 PCM, IMA ADPCM, UNSIGNED PCM, 2 Bit ADPCM, or 4 Bit ADPCM).

 <bps> Decimal number defining the average number of bits in the
 compressed sample not including silence compression (2, 4 or 8).

 <tm> Decimal number (0) reporting the time interval, in units of
 0.1 second, between timing marks. A value of 0 reports that
 timing marks are not supported.

 <vsr> <range of values> containing the supported range of voice
 samples per second of the analog signal (8000).

 <scs> <range of values> containing the supported range of sensitivity
 settings for voice receives (0). A 0 indicates not supported.

 <sel> <range of values> containing the supported range of expansion
 values for voice transmits (0). A 0 indicates not supported.

Server Extensions

Table of Contents

Description
Hangup Extension

Description

The ncidd server supports Server Extensions. A Server Extension is an external script or program that is called
by ncidd to perform a function and return a result. Server Extensions are a way for users to add functionality to
NCID without requiring changes to NCID itself. Server Extensions are isolated from the main NCID distribution
and because of this they do not normally require any changes when NCID is upgraded to a later version.

You can use any scripting or programming language desired.

Hangup Extension

The first Server Extension distributed with NCID is the Hangup Extension.

A Hangup Extension can be used with and without Internal Hangup. (Internal Hangup is defined as call
termination using the ncidd.blacklist and ncidd.whitelist files.)

It works like this:

When Caller ID is received from a modem and it is not terminated by the Internal Hangup logic and is not in
'ncidd.whitelist', the server will check to see if a Hangup Extension has been enabled. If so, the server will
pass the current call info to the Hangup Extension, execute it and wait for a response. If the Hangup
Extension results in a positive match by returning the word hangup, call termination will take place
automatically.

The Hangup Extension can also change the "announce" file name to give a different message to some
callers, and can return a hangup reason that will be added to the displayed caller name.

Hangup Extensions use all of the same Internal Hangup modes (normal, fax, announce). Be sure to review the
required Modem Configuration parameters.

Three settings in ncidd.conf control Hangup Extensions:

Setting Values

set hupmode

0 = disabled
1 = Normal Hangup
2 = Fax Hangup
3 = Announce Hangup

default: 0

set hupname
the name of the hangup script or program

default: hangup-nohangup

set huprmd

optional voice file to be played if hupmode = 3

default: "announce" file used by Internal Hangup (usually
DisconnectedNotInService.rmd)

When you enable a Hangup Extension, you also need to indicate the hangup script to use. The default is
hangup-nohangup which will run, but it will never trigger a hangup. When testing your script you can give the
full path name to where it is located. When it's working OK, copy it to the path appropriate for your operating
system:

/usr/share/ncid/extensions

or

/usr/local/share/ncid/extensions

Once the file is there you give the name of the script in ncidd.conf:

set hupname = hangup-custom

You create your own Hangup Extension script/program external to NCID in whatever language you would like. It
can have whatever logic you wish for terminating a call. You can even have it return the name of a customized
voice message file for individual phone numbers. It is not necessary for your Hangup Extension to check
ncidd.whitelist because the NCID server already does this for you and will have automatically applied any

Simple Expressions or Regular Expressions to the incoming call.

The technical details of creating a Hangup Extension are outside the scope of this document (see NCID-API).

However, several ready-to-use Hangup Extensions and template Hangup Extensions are included with NCID.
Template Hangup Extensions have a file name ending in '-skel' (short for "skeleton"). These will always be
replaced when NCID is updated. Before customizing a template, it is essential that you copy or rename the
template script so that it does not end in '-skel'.

Below is a summary of the Hangup Extensions included with NCID:

The hangup-calls extension hangs up on every call not in the whitelist.

The hangup-closed-skel script is a template for playing a recorded "we are closed" message prior to
hanging up on calls within a specific time period. You need to customize the start and end times and
record a message. It is recommended that your recorded message include the name of your business
so callers can be sure they dialed the correct number.

The hangup-combo-skel script is a template for calling two extension scripts. By default, it calls
hangup-fakenum and hangup-fcc. Rename it to hangup-combo after you have customized it.

The hangup-fakenum extension hangs up on calls where the number is absent or not allowed in the
North American numbering plan, or where the name is mostly numeric. Optionally, it will also check a
list of valid area codes brought in with the get-areacodes-list script. Read more at Enforcing the North
American Numbering Plan.

https://ncid.sourceforge.io/doc/NCID-API.html
https://ncid.sourceforge.io/man/hangup-calls.1.html
https://ncid.sourceforge.io/man/hangup-closed-skel.1.html
https://ncid.sourceforge.io/man/hangup-combo-skel.1.html
https://ncid.sourceforge.io/man/hangup-fakenum.1.html
https://ncid.sourceforge.io/man/get-areacodes-list.1.html

The hangup-fcc extension hangs up on calls where the number can be found in the FCC's open data list
of "Unwanted Calls". The blacklist is stored locally in /etc/ncid/fcc.blacklist and is typically updated daily
by a cron job (or Mac OS X launchd daemon) that calls get-fcc-list to fetch the latest version from a web
site. Read more at CallerID Blacklist from FCC Data.

The hangup-message-skel script is a template that contains a sample list of phone numbers with their
corresponding name of a recorded message (voice) file that is played before terminating the call. There
are no provisions to record a message from the caller; NCID is not an answering machine.

The hangup-nohangup script does not hangup on any calls. This is the default script in case the user
forgets to change the hupmode setting in ncidd.conf.

The hangup-postal-code extension scrip hangs up of calls if a search of the US postal codes for a state,
commonwealth or territory abbreviation at the end of a Caller ID name if found.

The hangup-skel extension is a very basic template to determine if the number or name received should
tell ncidd to hangup. You might use this as a starting point, for example, to query an Internet site to
determine if the call should be terminated. Or perhaps you have a local relational database with names
or numbers of blacklisted callers.

Log Files

Table of Contents

Requirement

Description

Yearly Logs

Requirement

logrotate

NCID uses logrotate to prune its log files each month. When it prunes the log, it saves a backup. Up to five
backups are saved.

Another system log rotation program can be used but it must be configured to zero (empty) the log each month
in order to use the ncid-yearlog program.

Description

Here is an alphabetical list of NCID log files stored in /var/log:

Log file name Log type Description

cidcall.log server Calls and messages

ciddata.log server
Raw data received by ncidd server as captured from modems and
gateways*

lcdncid.log client LCDproc client activity

ncid2ncid.log gateway NCID-to-NCID gateway activity

https://ncid.sourceforge.io/man/hangup-fcc.1.html
https://ncid.sourceforge.io/man/get-fcc-list.1.html
https://ncid.sourceforge.io/man/hangup-message-skel.1.html
https://ncid.sourceforge.io/man/hangup-nohangup.1.html
https://ncid.sourceforge.io/man/hangup-postal-code.1.html
https://ncid.sourceforge.io/man/hangup-skel.1.html

ncidd.log server Server activity

obi2ncid.log gateway OBihai gateway activity

rn2ncid.log gateway Remote Notifier gateway activity

sip2ncid.log gateway SIP gateway activity

wc2ncid.log gateway Whozz Calling gateway activity

xdmf2ncid.log gateway XDMF gateway activity

yac2ncid.log gateway YAC gateway activity

*Note: If /var/log/ciddata.log exists, ncidd will write to it. It must be manually created prior to launching ncidd:

 sudo touch /var/log/ciddata.log

Each month logrotate uses /etc/logrotate.d/ncid to prune files as required in /etc/ncid/ncidrotate.conf. Only two
variables are expected to change: RotateOff and Lines2keep.

If the user does not want a log rotated, set RotateOff=1. This will let the log keep growing until the operating
system decides it is too large.

The default for Lines2keep is 0. Some users like to keep some lines in the log when it is pruned. If you would like
to keep the last 10 lines at the start of the month, set Lines2keep=10

If you turned rotation off or do not prune a log to zero each month, you should backup the log to someplace
that is not /var.

Yearly Logs

NCID can keep yearly logs automatically in $HOME/ncid/log/ by running /usr/share/ncid/sys/ncid-yearlog on the
first of every month from the user's crontab.

If ncidrotate.conf has Lines2keep=0 and rotatebysize.conf has minsize 1, you can enable ncid-yearlog by
creating or editing a crontab and adding this line (NOTE: /usr/share can be /usr/local/share on some operating
systems):

 11 5 1 * * /usr/share/ncid/sys/ncid-yearlog

Command Line Tools

Table of Contents

Tools Index

Overview
cidalias
cidcall
cidnumber-info
cidupdate
get-fcc-list

get-areacodes-list
ncid-yearlog
ncidutil
update-cidcall

Overview

NCID has command line Perl scripts (also called tools) that can list or modify the ncidd.alias, ncidd.blacklist,
ncidd.whitelist and cidcall.log files.

There are four tools for dealing with the alias, blacklist and whitelist files:

cidalias, cidcall, cidupdate and ncidutil.

If you edit and modify ncidd.alias, ncidd.blacklist, or ncidd.whitelist with an editor:

(optional) Run cidupdate after modifying ncidd.alias to update the cidcall.log file with the new
aliases

Force the server to reload ncidd.alias, ncidd.blacklist and ncidd.whitelist:

sudo pkill --signal SIGHUP ncidd

NCID has a tool for creating a yearly call log from the monthly call logs. The yearly call log is updated each
month. The monthly call logs are only kept for a specific period of time but yearly call logs are kept until deleted.

cidalias

The cidalias tool displays aliases in the alias file in one of three different formats: raw, human readable and
delimited.

See the cidalias.1 man page for a complete description and all options.

cidcall

The cidcall tool is used to view either the cidcall.log file or the cidcall-.log in one of two different formats: raw
and human readable. The default is to display BLK, CID, HUP, OUT, PID and WID lines from the cidcall.log file in a
human readable format. Messages and Smartphone Notes will be viewed when their option is selected.

See the cidcall.1 man page for a complete description and all options.

EXAMPLES:

View all call types, but not message types:

 cidcall

View messages and notes:

 cidcall --MSG --NOT

View all call types from the 2018 call log:

 cidcall --yearlog 2018

https://ncid.sourceforge.io/man/cidalias.1.html
https://ncid.sourceforge.io/man/cidcall.1.html

Assuming the current year is 2019, view all call types from up to but not including the current month in the
cidcall.log:

 cidcall --year 2019

cidnumber-info

The cidnumber-info tool looks up a phonenumber and shows the number formatted for the country of the
number along with the following name and data fields in the ncidd call log format

cidupdate

The cidupdate tool is used to update the cidcall.log file with newly created aliases. It is also used by the server
whenever clients want the call logfile updated.

Command Line Usage:

Add one of more aliases to ncidd.alias

Run cidupdate to update cidcall.log for any calls that require the new alias or aliases.

Reload ncidd.alias, ncidd.blacklist and ncidd.whitelist:

sudo pkill --signal SIGHUP ncidd

See the cidupdate.1 man page for a complete description and all options.

get-fcc-list

The get-fcc-list script is usually called daily from a crontab to fetch the fcc.blacklist from a server for use

by hangup-fcc or to be added to the ncidd.blacklist.

It is more completely described in its own section about using the CallerID Blacklist from FCC Data

get-areacodes-list

The get-areacodes-list script only needs to be called every six months or less to fetch a newer list of valid area
codes for hangup-fakenum. It can be added the a crontab if desired.

It is more completely described in its own section about using the CallerID Blacklist from FCC Data

ncid-yearlog

The ncid-yearlog tool automatically creates a yearly call log from the monthly call logs. It is called from the
user's crontab on the first of the month. Review Yearly Logs and ncid-yearlog.1

ncidutil

The ncidutil tool is only used by the server to add, modify, or remove entries from ncid.alias. It is also used by
the server to add or remove entries from ncidd.blacklist and ncidd.whitelist.

See the ncidutil.1 man page for a complete description and all options.

update-cidcall

The update-cidcall tool adds the new name and data fields from ncidnumber-info to the lines from the
cidcall.log file. The output is sent to STDOUT.

https://ncid.sourceforge.io/man/cidupdate.1.html
https://ncid.sourceforge.io/man/ncid-yearlog.1.html
https://ncid.sourceforge.io/man/ncidutil.1.html

CallerID Blacklist from FCC Data

Table of Contents

Description
Requirements
Background
How FCC Data Retrieval Works
Configure NCID
Configure get-fcc-list for Periodic Update

Description

The FCC gets many complaints about unwanted callers and makes a summary available to the public. We refer
to this summary as the FCC Data.

When used with a modem (see the Hangup Overview), ncidd can use this information as a blacklist to hang up
on unwanted North American callers.

A get-fcc-list script, run periodically, fetches this data from an intermediate web server.

The FCC Data can be used with the NCID server's Internal Hangup and Hangup Extensions.

Requirements

NCID release 1.7 or newer
a modem to do the hangup
internet connection
wget - fetches files using http
pkill - send signal to all running ncidd servers to reload alias, blacklist and whitelist

Background

On Oct 21, 2015, the United States Federal Communications Commission (FCC) announced (archived here or
here) they would be releasing weekly data to support robocall blocking technologies.

On May 23, 2016, the FCC announced (archived here or here) a new method for us to obtain the information. It
appears to be updated in either real time or daily.

http://localhost:34275/ncid/ncid.html
https://www.fcc.gov/document/fcc-releasing-data-support-robocall-blocking-technologies
https://archive.is/https://www.fcc.gov/document/fcc-releasing-data-support-robocall-blocking-technologies
https://archive.is/sMhIQ
https://consumercomplaints.fcc.gov/hc/en-us/articles/205239443-Data-on-Unwanted-Calls
https://archive.is/https://consumercomplaints.fcc.gov/hc/en-us/articles/205239443-Data-on-Unwanted-Calls
https://archive.is/xv2S6

You may also go to the FCC's site and add your own complaints.

The FCC Data is a huge spreadsheet available from the FCC's Open Data project. It has a row for each complaint
received about annoying phone callers going back to October 2014.

The spreadsheet is growing larger as complaints arrive at a rate of around 500 per day. There is a lot of
information that we don't care about and some complaint types that don't involve phone calls.

You can find the CGB - Consumer Complaints Data at https://opendata.fcc.gov/Consumer/CGB-Consumer-
Complaints-Data/3xyp-aqkj

The original NCID script to fetch and analyze the complaints data was written by Mike Stember. It was named
FCC2ncid.

A change in the FCC's data caused FCC2ncid to stop finding new numbers after October 2016, so it has been
replaced by get-fcc-list.

How FCC Data Retrieval Works

Every day at around 7:11AM EST, an intermediate web server downloads the FCC's large dataset. By performing
the following processing, the intermediate web server reduces a 22 megabyte download to a more manageable
195,000 bytes:

duplicates are merged together and counted
only numbers reported three or more times are included
numbers which have been inactive for 600 days are excluded
the resulting list is sorted and stored as fcc.blacklist

Each installation of NCID can run a local copy of the get-fcc-list script to fetch fcc.blacklist .

If the script is configured for use with NCID Hangup Extensions (usually hangup-fcc), no further processing is
needed.

If the script is configured for use with the NCID server's Internal Hangup, it performs the following additional
steps:

backs up the existing ncidd.blacklist into /var/backups/ncid/
deletes the old FCC data from ncidd.blacklist
appends the latest FCC data to ncidd.blacklist
signals ncidd to reread the alias, blacklist and whitelist files

Configure NCID

Choose one of the following:

Internal Hangup

File fcc.blacklist is appended to ncidd.blacklist . This method allows NCID clients (e.g.,
NCIDpop, NCID Android) to query the blacklist.

1. Configure the NCID server to use Internal Hangup as explained in the User Manual.
2. Configure get-fcc-list for periodic update with the -a (append) option.

Hangup Extension

https://consumercomplaints.fcc.gov/hc/en-us/articles/115002234203-Unwanted-Calls
https://opendata.fcc.gov/Consumer/CGB-Consumer-Complaints-Data/3xyp-aqkj

File fcc.blacklist is used as-is by the Hangup Extension. This method has a smaller memory footprint
and is more modular.

1. Configure the NCID server to use Hangup Extensions as explained in the User Manual. Specify
hangup-fcc as the name of the extension.

2. Configure get-fcc-list for periodic update with the -n (no append) option.

If you wish to transition from using the FCC Data with Internal Hangup to using Hangup Extensions:

Run get-fcc-list as root, just once, from the command line, using the -r option.

This will backup the current ncidd.blacklist , remove old FCC Data lines and force the server to reread
the modified ncidd.blacklist .

You must specify the full path to the script.

 sudo /usr/share/ncid/sys/get-fcc-list -r

or

 sudo /usr/local/share/ncid/sys/get-fcc-list -r

Configure get-fcc-list for Periodic Update

You likely want to run get-fcc-list as a daily background task. It is suggested that it be run at 08:15AM local
time.

Linux/UNIX - use cron and log activity to /tmp/get-fcc-list.log

1. Run the crontab editor as root:

 sudo crontab -e

2. Add two new lines at the end depending on the hangup method:

Internal Hangup - append (-a) FCC Data to ncidd.blacklist

 # run 1x each day at 08:15

 15 08 * * * /usr/share/ncid/sys/get-fcc-list -a \
 > /tmp/get-fcc-list.log 2>&1

Hangup Extension - do not append (-n), use fcc.blacklist as-is

 # run 1x each day at 08:15

 15 08 * * * /usr/share/ncid/sys/get-fcc-list -n \

 > /tmp/get-fcc-list.log 2>&1

Enforcing the North American Numbering Plan

Table of Contents

Description
Requirements
Background
Configure NCID
Configure get-areacodes-list for Periodic Update

Description

The North American Numbering Plan has some rules which many spam callers have not figured out, or can not
duplicate.

When used with a modem (see the Hangup Overview), ncidd can use this to hang up on unwanted callers.

optionally, a get-areacodes-list script, run periodically, updates a list of valid area codes.

Requirements

NCID release 1.7 or newer
a modem to do the hangup
ten digit caller ID

Creating and updating the list of valid area codes requires:

internet connection
wget - fetches files using http

Background

Many calling phone numbers do not exist in North America. Spam callers from distant places don't seem to
know this and call with area codes like 000 or exchange codes like 111.

In addition, spam callers appear to have difficulty filling in the caller ID name field. This will show up as
something like V1234567890 or be the same as the calling number. Phone companies supply text like A SMITH
for the name, so hangup-fakenum disallows numeric names.

The hangup-fakenum extension runs after the built-in aliases, and the configured aliases in ncidd.alias have
been applied. The whitelist is checked, then (if hangup is enabled) the blacklist, then (if hupmode is enabled) the
extension script.

Configure NCID

Hangup Extension

1. Configure the NCID server to use Hangup Extensions as explained in the User Manual. Specify
hangup-fakenum as the name of the extension (or chain some extensions together with hangup-
combo).

2. Add a list of valid area codes by running get-areacodes-list once and then schedule it for periodic
update.

 sudo /usr/share/ncid/sys/get-areacodes-list

or

http://localhost:34275/ncid/ncid.html

 sudo /usr/local/share/ncid/sys/get-areacodes-list

Configure get-areacodes-list for Periodic Update

You might want to run get-areacodes-list as a repeated background task. The area codes do not change very
often.

Linux/UNIX - use cron and log activity to /tmp/get-areacodes-list.log

1. Run the crontab editor as root:

 sudo crontab -e

2. Add two new lines at the end:

 # run 2x yearly at 08:15

 15 08 3 6,12 * /usr/share/ncid/sys/get-areacodes-list \

 > /tmp/get-areacodes-list.log 2>&1

NCID FAQ

Table of Contents

FAQ Index

General

What is Caller ID?
What is NCID?
Does NCID only support one client?
Can I have multiple servers and clients?
Can I run the NCID client under Windows?
How do I determine if my modem supports Caller ID?
What is an NCID gateway?
Can NCID be used with YAC (Yet Another Caller ID)?
Does NCID support more than one phone line?
What packages are distributed?

Server

What is an "alias" and how do I configure one?
What is a "blacklisted" caller and how do I configure one?
What is a "whitelisted" caller and how do I configure one?
How do I configure NCID to auto hangup on specific calls?

Gateways

How do I configure NCID to use the XDMF Gateway?
How do I configure NCID to use the SIP Gateway?
How do I configure NCID to use the YAC (Yet Another Caller ID) Gateway?

How do I configure NCID to use the Whozz Calling (WC) Gateway?
How do I configure NCID to use the Remote Notifier Gateway?

Client

How many ways does the client display the Caller ID?

Client Output Modules

What is an output module?
What output modules are available?
Can output modules be configured?
How are output modules started?
How do I configure the page module to send the CID information to my cell phone?

General
What is Caller ID?

This is best explained in this Caller ID article on Wikipedia.

What is NCID?

NCID is a Network Caller ID package that distributes Caller ID over a network to a variety of devices and
computers.

NCID consists of:

A server (ncidd) that normally uses a device to monitor a telephone line for CID information.
A Universal Client (ncid) that obtains the CID information from the NCID server and displays it.
Multiple gateways that obtain the Caller ID information and send it to the NCID server as a CID
message.
Command line tools that deal with the Whozz Calling (WC) Ethernet Link device and edit or list the
cidcall.log, ncidd.alias, ncidd.blacklist and ncidd.whitelist files.

The Universal Client has output modules that can be used to push CID to other computers and devices. Here is a
partial list:

MythTV
pager
cell phone, using the email-to-SMS gateway of the carrier
smartphones and tablets running Android or iOS
"speak", using a text-to-speech converter
LCD displays

Does NCID only support one client?

The NCID package only comes with one client, but other clients are available such as NCIDPop and
LCDncid .

Third party clients are also available for various platforms:

OSX Pop-Up
NCIDStatusBarMenu
Yet Another Caller ID Program

https://en.wikipedia.org/wiki/Caller_ID
https://ncid.sourceforge.io/addon.html

TWNcid
NCID client for GNOME
ncid-sqlite
googletv_ncid
SmartCallMonitor
CIDTracker
ncidApp
tellows Callblocker
Sipura2NCID
NCID Sender
ncid-xmpp
ncid-client-py
ncid-notify
liveNCID
ncid-psql
ncidhitta
ncidmon
node-ncid-client
etc.

Can I have multiple servers and clients?

There should only be one server per phone line.

NCID is designed to have multiple clients. For example: a client on a cell phone, a client on each computer in
your network and a client to handle your cell phone.

Can I run the NCID client under Windows?

The GUI client is the only part of NCID that runs directly under Windows. Output modules are not supported.

If you want to run the complete NCID distribution, you need to install Cygwin. You need to configure the NCID
server so it will only use its gateways to obtain the Caller ID. If you want to use a modem, you need to also install
a YAC server.

How do I determine if my modem supports Caller ID?

The modem documentation should tell you if the modem supports Caller ID and how to set it up. NCID will try
two ways to configure a modem for Caller ID and the configuration file (ncidd.conf) has other methods you can
try.

NCID documentation has a section called Modems that gives some information on configuring a modem for
Caller ID and there is also a section called Modem Caller ID Test that tells how to use ncidd to test the modem.

What is an NCID gateway?

An NCID gateway obtains the Caller ID information and sends it to the NCID server as a CID message. Currently
included gateways are:

An XDMF Gateway that obtains the CID information as messages from an SDMF or MDMF USB device,
such as the CTI Comet USB or the Holtek HT9032D based PSTN Caller ID module and sends it to the
NCID server. Some modems can also be configured to output in SDMF/MDMF format.
A SIP Gateway that obtains the CID information using VoIP SIP packets and sends it to the NCID server.
A YAC (Yet Another Caller ID) Gateway that obtains the CID information from a YAC modem server.

https://www.cygwin.com/
https://www.crucible-technologies.co.uk/products/WEB-COMET
https://www.aliexpress.com/item/-/32807442435.html

A Whozz Calling (WC) Ethernet Link device gateway that obtains the CID information from multiple
POTS (Plain Old Telephone Service) lines.
A gateway for the Android app "Remote Notifier" that obtains smart phone CID and text messages.
An NCID-to-NCID Gateway that sends the CID information from one or more NCID servers to a selected
NCID server.

Can NCID be used with YAC (Yet Another Caller ID)?

Yes. NCID has a YAC output module and a YAC Gateway.

The YAC output module is used with the NCID client to obtain the CID information from the NCID server and send
it to YAC listeners.

The YAC gateway receives the CID information from a YAC modem server, formats it and sends it to the NCID
server as a CID message. If your windows PC has a modem, you can install YAC and configure it to send the CID
to the YAC Gateway.

Does NCID support more than one phone line?

Yes, NCID supports any/all of the following:

Up to 5 modems or serial devices
Multiple SIP Gateways
Multiple YAC Gateways
Multiple Whozz Calling (WC) devices using the WC gateway
Multiple XDMF Gateways on different, network-connected remote machines, or on the same, local
machine, provided a separate configuration file or the --usbport|-u command line option are used for
each gateway.
It should be noted that multiple XDMF Gateway setups are not tested due to lack of hardware units,
therefore neither officially supported.

Each SIP Gateway can support multiple VoIP telephone connections.

Each WC device can support either 2, 4, or 8 POTS (Plain Old Telephone Service) lines.

A single XDMF Gateway supports only one POTS line, however, you can have multiple XDMF Gateways each
connected to a separate POTS line.

What packages are distributed?

NCID: Package includes a server, client and gateways.
LCDncid: An NCID client that outputs to a LCD display using LCDproc.
NCIDPop: An NCID popup client for Linux based distros, Mac OS X and Windows.

Server
What is an "alias" and how do I configure one?

An "alias" allows you to replace a generic Caller ID name with a custom one that is more meaningful. You can
configure several hundred aliases if you want. Aliases are stored in the ncidd.alias file.

For example, if an incoming call has the name "WIRELESS CALLER" you can use an alias to change it to the real
name of the caller. You would use this form of alias:

 alias NAME "FROM" = "TO" if "TELEPHONE_NUMBER"

https://www.callerid.com/products/ethernet-link/
https://www.callerid.com/products/ethernet-link/

Since we do not care what name is there, we will use '*' in the FROM field. The TO field can contain spaces so in
our case we want it to say: "John on cell". The most important field is the TELEPHONE_NUMBER; this must match
the number ncidd receives and in most cases, it includes a '1', even though it is not displayed. Putting in the
values, our alias looks like this:

 alias NAME * = "John on cell" if 14075551212

The complete documentation for aliases is in the ncidd.alias man page and as comments in the ncidd.alias file.

What is a "blacklisted" caller and how do I configure one?

The blacklist is a list of names or numbers that NCID will automatically hangup. The blacklisted names and
numbers are stored in the ncidd.blacklist file.

The blacklist supports simple expressions (the default) or extended Posix Regular Expressions (an option).

Using Simple Expressions:

The name or number in the blacklist is treated as a substring of the caller name or number. For example,
using a 10 digit US number:

 3215551212 - will only match 3215551212
 321555 - will match any number with 321555 in it

 ^321555 - will match any number beginning with 321555

Using Posix Extended Regular Expressions:

 ^3215551212$ - will only match 3215551212
 .*321555.* - will match any number with 321555 in it
 ^321555 - will match any number beginning with 321555

The ncidd.blacklist file comes preconfigured for PRIVATE names, a spoofing area code and a few expensive area
codes.

The complete documentation for the blacklist is in the ncidd.blacklist man page and as comments in the
ncidd.blacklist file.

What is a "whitelisted" caller and how do I configure one?

The whitelist is a list of names or numbers in the ncidd.whitelist file. If a call matches a name or number in the
ncidd.blacklist file, the whitelist file is consulted to see if the call should be allowed.

The whitelist file uses the same expressions as the blacklist file.

As an example, the blacklist file comes preconfigured to blacklist the entire 999 unused area code. If you want to
allow a specific number from area code 999, you would add it to ncidd.whitelist:

Using Simple Expressions: 9995551212

Using Posix Extended Regular Expressions: 9995551212 or ^9995551212$

You might notice there are 2 entries in the blacklist file for each of the blacklisted area codes. This is because in
the US some systems send a leading 1 and some do not. Not knowing which system a user might have, two
entries are made to work with both types. Thus the above example using simple expressions becomes:

 9995551212 19995551212

https://en.wikipedia.org/wiki/Regular_expression

The complete documentation for the whitelist is in the ncidd.whitelist man page and as comments in the
ncidd.whitelist file.

How do I configure NCID to auto hangup on specific calls?

The server hangup feature is configured in the "Automatic Call Hangup" section of the ncidd.conf file. Just
remove the '#' from the line:

 # set hangup = 1

Once you change ncidd.conf, you must start/restart ncidd to read it.

You need to enter the caller name or telephone number in the ncidd.blacklist file, usually one name or number
per line.

If there is a match on the name or number when a call comes in, it will immediately be terminated. When a call
is terminated, an "HUP" entry is made in the ncidd.log file.

Gateways
How do I configure NCID to use the XDMF Gateway?

You need an SDMF or MDMF USB device, such as the CTI Comet USB or the Holtek HT9032D based PSTN Caller ID
module. Or, if your modem supports it, you can use the XDMF Gateway with a modem configured to output
Caller ID in SDMF or MDMF hexadecimal format using ASCII text. The most typical setup uses the CTI Comet USB
or the Holtek HT9032D based PSTN Caller ID module and is described below.

You need to configure ncidd and the xdmf2ncid gateway.

Because the POTS (Plain Old Telephone Service) lines are connected directly to the CTI Comet USB device or the
Holtek HT9032D based PSTN Caller ID module, you need to set cidinput to 2 or 3 in ncidd.conf. Once you change
ncidd.conf, you must start/restart ncidd to read it.

Then you need to modify xdmf2ncid.conf to set the USB port used by the CTI Comet USB or the Holtek HT9032D
based PSTN Caller ID module, uncomment the line and change the USB port. For Linux systems, ttyUSB? is
normally used where USB? is USB0, USB1, USB2, or USB3.

 Edit xdmf2ncid.conf:

 change the line: #usbport = /dev/ttyUSB1
 to: usbport = /dev/ttyUSB1

If using the Holtek HT9032D based PSTN Caller ID module, set ht9032 = 1.

 Edit xdmf2ncid.conf:

 change the line: # ht9032 = 1
 to: ht9032 = 1

Make sure the CTI Comet USB device or the Holtek HT9032D based PSTN Caller ID module are setup properly.
Start xdmf2ncid in test mode:

 xdmf2ncid -t

How do I configure NCID to use the SIP gateway?

https://www.crucible-technologies.co.uk/products/WEB-COMET
https://www.aliexpress.com/item/-/32807442435.html

You need to configure your network, ncidd and the sip2ncid gateway for the ports that SIP Invite uses.

The sip2ncid gateway automatically monitors both TCP and UDP protocol packets.

You can test for network packets in general, or SIP packets for a particular port, using sip2ncid. You would need
to use the -T|--testall or the -t|--testsip option. Once you determine the ports being used, enter them in
sip2ncid.conf.

If you have SIP packets on your home network, your network is already configured and ready to use. However, a
home network may need to be configured to receive SIP packets. For a router/phone device you may need to put
your computer in the Demilitarized Zone (DMZ) to see SIP packets; usually port forwarding will not work. You
should also review this tutorial: Configuring your home network for SIP-based callerID (on the Wayback
Machine)

If you are using a POTS (Plain Old Telephone Service) line and SIP, no additional ncidd configuration is necessary.
If you are only using SIP you need to set cidinput to 2 or 3 in ncidd.conf. Once you change ncidd.conf, you must
start/restart ncidd to read it.

How do I configure NCID to use the YAC (Yet Another Caller ID) Gateway?

You need to configure ncidd, yac2ncid and your YAC server.

If you are using a POTS (Plain Old Telephone Service) line and YAC, no additional ncidd configuration is
necessary. If you are only using YAC, or SIP and YAC, you need to set cidinput to 2 or 3 in ncidd.conf. Once you
change ncidd.conf, you must start/restart ncidd to read it.

If the YAC server is on the same computer as ncidd, no configuration is necessary. If it is on a different computer,
the IP address of NCID needs to be inserted into the yac2ncid.conf file.

The NCID YAC Gateway is a YAC Listener, so the YAC server needs the address IP address of the computer running
yac2ncid.

How do I configure NCID to use the Whozz Calling (WC) Gateway?

You need a Whozz Calling Ethernet Link device. You can get either a basic or a deluxe 2, 4, or 8 port model. You
can configure as many as you would like, in any combination of 2, 4, or 8 port units.

You need to configure ncidd, wc2ncid and the Whozz Calling device.

Because the POTS (Plain Old Telephone Service) lines are connected directly to the Whozz Calling device, you
need to set cidinput to 2 or 3 in ncidd.conf. Once you change ncidd.conf, you must start/restart ncidd to read it.

If your local network uses 192.168.0.x you do not need to configure wc2ncid.conf. If you have a different
network, say 192.168.1.x, then you need to modify wc2ncid.conf:

 Edit wc2ncid.conf:

 change the line: wcaddr = 192.168.0.90

 to: wcaddr = 192.168.1.90

The wc2ncid gateway script needs to be run at least once before using it with NCID. It also needs to be run
whenever you change wcaddr in wc2ncid.conf.

 wc2ncid --set-wc

Make sure the Whozz Calling device is setup properly. Start wc2ncid in test mode:

https://web.archive.org/web/20140417163015/http://www.files.davidlaporte.org/sipcallerid.html
https://www.callerid.com/products/ethernet-link/

 wc2ncid -t

How do I configure NCID to use the Remote Notifier Gateway?

You need to install the free Remote Notifier for Android app from F-Droid.

You need to configure the Remote Notifier app, ncidd and rn2ncid.

Launch Remote Notifier configure the IP address of the computer running the NCID server.

If you are using a POTS (Plain Old Telephone Service) line and Remote Notifier, no additional ncidd configuration
is necessary. If you are only using Remote Notifier, set cidinput to 2 or 3 in ncidd.conf. Once you change
ncidd.conf, you must start/restart ncidd to read it.

Normally rn2ncid does not need to be configured unless you are using ncid-page to send calls and messages to
your smart phone. In that case you need to edit the reject line at the end of the rn2ncid.conf file: Specify the
"from" of SMS/MMS messages to be rejected and not passed through to the NCID server. This is usually an email
address dedicated to the SMS-to-email service of your carrier.

Test rn2ncid without connecting it to the ncidd server.

rn2ncid --test

Choose the Remote Notifier "Send test notification" option.

Client
How many ways does the client display the Caller ID?

The client receives the Caller ID from the server and displays it in one of three ways:

Its GUI Window
A Terminal Window
Using a Output Module

An output module can also send the information to a smart phone, pager, email address and more.

Client Output Modules
What is an output module?

An output module receives the Caller ID information from the ncid client and gives the client new functionality.

There are various output modules than come with NCID and there are also third party ones.

What output modules are available?

The following output modules are distributed:

ncid-alert: Send NCID call or message desktop notifications.
ncid-initmodem: Reinitialize the modem when "RING" is received as the number.
ncid-kpopup: Uses KDE to create a popup for the Caller ID.
ncid-mythtv: Displays the Caller ID on MythTV.
ncid-notify: Sends the Caller ID on an iOS device or an Android device.
ncid-page: Sends the Caller ID to a cell phone or pager.
ncid-samba: Creates a popup for the Caller ID on windows using Samba.
ncid-skel: Just echos the Caller ID. Modify it to write new modules.

https://f-droid.org/wiki/page/org.damazio.notifier

ncid-speak: Sends the Caller ID to a text-to-speech program.
ncid-yac: Sends the Caller ID to YAC clients.
ncid-wakeup: Wakeup X-Windows.

Can output modules be configured?

Output modules are configured using files in the conf.d/ directory. There will be a separate file for each module
that needs one, for example, conf.d/ncid-page.conf.

For more information, see the comments in the individual files in the conf.d/ directory and the man page for
each module.

How are output modules started?

If you are using Debian, Fedora, Ubuntu, FreeBSD, OSX, or raspios you would use the OS specific ncid service
script to activate the service.

For distributions not based on Debian, Fedora, or BSD the modules need to be started manually, Here are three
examples:

 ncid --no-gui --module ncid-page &
 ncid --no-gui --module ncid-notify &
 ncid --no-gui --module ncid-speak &

Each of the above commands start ncid using an output module and puts it in the background. The first line
starts ncid using the page output module. The second line starts ncid using the notify output module. The third
line starts ncid using the speak output module.

How do I configure the page module to send the CID information to my cell phone?

You need to modify one line in ncid-page.conf and maybe one line in ncid.conf.

Find this line in ncid.conf:

 PageTo=

PageTo needs to be set to your mobile provider SMS e-mail address. Here are addresses for the major ones in the
US:

 Sprint: phonenumber@messaging.sprintpcs.com
 Verizon: phonenumber@vtext.com
 T-Mobile: phonenumber@tmomail.com

 AT&T: phonenumber@txt.att.net

For example, if your provider is AT&T and your cell number is 1-321-555-1212, then your PageTo line becomes:

 PageTo=13215551212@txt.att.net

If you want a page anytime the phone rings, you are finished.

if you only want a page if the phone call is unanswered or is at a certain ring count, you need to uncomment the
ncid_page line in ncid.conf, then change the ring count as desired.

Be careful, all Caller ID devices do not indicate rings. If RING is not sent by the modem, a ring count will not
work and the page will never be sent.

mailto:13215551212@txt.att.net

If you are using a modem, there is no indication of whether the the phone was answered or not. The modem
sends RING to ncidd each time it gets the ringing signal. When RING is not sent anymore ncidd will indicate the
end of ringing. A ring count of 4 is a good value to assume the phone was not answered. Remove the '#' so you
have this line:

 set ncid_page {set Ring 4}

If you are using SIP, you can configure it to send the page on hangup without an answer by modifying the above
line to:

 set ncid_page {set Ring -1}

See the comments in the ncid.conf file for more information on configuring the ring option line.

Verbose Levels

Table of Contents

Index

artech2ncid verbose levels

cideasy2ncid vverbose levels
cidupdate verbose levels
ncid verbose levels
ncidd verbose levels
ncid2ncid verbose levels
ncidnumberinfo verbose levels
obi2ncid verbose levels
rn2ncid verbose levels
sip2ncid verbose levels
wc2ncid verbose levels
xdmf2ncid verbose levels

artech2ncid verbose levels

Higher levels include lower levels.

LEVEL9:

 hid_write , X55_counter monitoring ,Ring monitoring

LEVEL8:

 CID detection and decoding , Hook flash detection

LEVEL7:

 file and network management (link to ncidd, log file , etc)

LEVEL6:

 signal handling

LEVEL5: dial parsing , Hook flash processing , CID processing

LEVEL4:

 incoming/outgoing calls timing (start time ,pickup time, end_time)

LEVEL3:

 line state : ON_LINE ,OFF_LINE ,ON_HOOK,Off_HOOK ,Beep_BEEP , RING

LEVEL2:

 communication with ncidd

LEVEL1:

 log command line
 display variable values
 log errors, cleanup, and termination

cideasy2ncid verbose levels

Higher levels include lower levels.

LEVEL9:

 not used

LEVEL8:

 not used

LEVEL7:

 not used

LEVEL6:

 not used

LEVEL5:

 hex dump

LEVEL4:

 received from the cideasy device
 sent to the cideasy device

LEVEL3:

 indicate ring, on/off hook,

 show Caller ID

LEVEL2:

 show devices

LEVEL1:

 log command line
 display variable values

 log errors, cleanup, and termination

cidupdate verbose levels

Higher levels include lower levels.

LEVELR:

 indicate if failed to open call log
 show rename from and to if asking for Y/n

 show result of attempted rename

LEVELE:

 indicate if no config file
 indicate if there is a config error
 show system error
 show internal program error
 show Terminated on non-option errors

LEVEL9:

 not used

LEVEL8:

 exit normally when position in code reached

LEVEL7:

 not used

LEVEL6:

 show line fields created

LEVEL5:

 not used

LEVEL4:

 changed blacklist #= name

 changed whitelist #= name
 show old cid line

LEVEL3:

 show write entry to new call log

LEVEL2:

 not used

LEVEL1:

 show start time
 show program name and version
 show command line options
 show config file name
 show alias file name

 show blacklist file name
 show whitelist file name
 show simple expresions or posix or perl regular expressions used
 for alias/blacklist/whitelist entries
 indicate alias file messages
 show if ignoring leading 1 in alias definition and calling number
 indicate blacklist and whitelist file messages

 show if ignoring leading 1 in alias definition and calling number
 show if updating current log or current and previous call logs
 show if skipping interactive prompt
 show end line
 show output call log name
 show terminated [by LEVEL8] with date and time

ncid verbose levels

Higher levels include lower levels.

LEVEL9:

 not used

LEVEL8:

 not used

LEVEL7:

 show getField Default clause
 show inserting row in table list
 show DisplayContextMenu mouse clicks
 show $noteFiles tail of contents, and name
 show country code and NTYPE

 show putFlag messages
 show tooltip messages

LEVEL6:

 show $dataBlock for "CID" when sendCID not called
 show label type for $dataBlock

LEVEL5:

 show show Assigned numbers for data received from ncidd
 show status of host and port at after each config file and command line

LEVEL4:

 shows fixed font family detected
 shows fixed font skipped
 shows history window font
 shows message window and display font
 shows help text font
 shows top level window geometry
 display history entries in milliseconds

 clock cannot scan start of call time
 clock cannot scan end of call time
 gateway limitations prevent calculation of duration for a CANCEL CALLINFO

LEVEL3:

 show all discovered lineids
 show attempting to connect

 show server option received
 indicate if no call array label for phone line label

LEVEL2:

 display history entries in milliseconds
 indicate rcfile and variable changed
 show all server options received
 indicate saved note to $notefile

LEVEL1:

 indicate if using PID file or not
 display about
 indicate if a output module is being used and which one
 indicate if optional module variable is not being used
 indicate if optional module variable is being used and ring count

 indicate width of name, number, line type and history window
 display received data if in raw mode
 indicate when call log is completely received
 indicate WRK ACCEPTED or REJECTED to server
 show "GOODBYE"

 show RELOAD, UPDATE, UPDATES, and REREAD server requests
 show "REQ: PAUSE ..." server requests
 show CIDINFO line on ring count match
 show data sent to module

 show message sent to module
 show CID data sent to module
 show unsupported line labels
 show unsupported alias types
 display popup message
 show discovered lineid's
 show current font

 show number of fixed and total fonts
 show calculated history text field length of message window
 show history text field rows
 indicate window geometry previously not saved or show saved window geometry
 show window geometry
 show window minimum size
 show length of all visible columns in history window

 show number of visible columns out of total number columns
 show resized history field length of message window
 indicate if ncid-alert started in ncid.conf file when autostart is turned on*
 indicate rcfile and variable changed
 indicate unable to save note
 indicate unable to save data in $rcdir because it is a file
 indicate history message and help fonts saved

ncidd server verbose levels

Higher levels include lower levels.

LEVELR

 indicated received connected signal with date and time
 when a client connects
 if no clients are connected

LEVELE

 indicate if no config file
 indicate if there is a config error
 indicate if there is no alias file
 indicate if there is a uname system call error
 indicate if open of ncidd log file failed
 indicate if open of call log failed

 indicate warning using noserial and nomodem in config file
 indicate if there is a set TTY error
 indicate warning if no modem or modem busy
 indicate if open TTY port failed
 indicate if TTY port fcntl error
 indicate if TTY port flush error
 indicate warning using normal hangup if using Announce Hangup

 and there is no recording file

 indicate what the hangup extension must start with "hangup-"
 indicate if hangup extension not found
 indicate if hangup extension must be executable
 indicate warning using normal mode if modem does not support FAX Hangup

 indicate warning using normal hangup if modem does not support
 Announce Hangup
 indicate warning using normal hangup if unknown hangup mode
 indicate if unable to parse ifaddress
 indicate if popen failed for cidupdate
 indicate if pclose failed for cidupdate
 indicate if popen failed for ncidutil

 indicate if pclose failed for ncidutil
 indicate if "sh -c" fails to start hangup script
 indicate if hangup script failed to return hangup or OK
 indicate if pclose failed for hangup script
 indicate status of hangup script after trying to run it
 indicate if TTY port lockfile failed to open
 indicate if failed to remove lockfile

 indicate if signal terminated program
 indicate if if received unexpected signal
 indicate if system error
 indicate Failed to remove stale lockfile
 indicate if internal program error
 show Terminated with date and time

LEVEL9:

 (can only be set by the command line)

 show poll() events flag
 show individual tests in strmatch()
 skips LEVEL8

LEVEL8:

 (can only be set by the command line)

 show alias, blacklist and whitelist tables
 normal exit

LEVEL7:

 show alias, blacklist and whitelist tables

LEVEL6:

 indicate client sent empty line
 show optional files failed to open
 indicate sending data to each client
 show progress messages while formatting the phone number
 show progress messages while interpreting the MESG

LEVEL5:

 display data as a hexdump
 show modem command return codes for hangup
 show lastring and ring count if ring detected
 show processing hangup request

 show reason for not sending to serial device in initModem

LEVEL4:

 indicate if name and nmbr received but no date or time
 indicate date, time, nmbr received
 indicate date, time, name or date, time, name, mesg received
 indicate date, time, nmbr, mesg received
 indicate date, time, nmbr, name or date, time, nmbr, name, mesg received

 detected TCI serial device format
 detected NetCallerID or gateway format
 indicate number without RING is Call Waiting (WID)
 show alias matching Begin: and End: with time and result
 show open, Begin, End and exit status for external cidupdate, ncidutil, and hangup
scripts

LEVEL3:

 show number of tries to init modem
 show modem responses
 show modem query commands for software version, country code, operation modes
 indicate Non 7-bit ASCII message deleted
 indicate Gateway sent CALL data
 indicate Gateway sent CALLINFO data

 indicate client sent text message
 indicate client sent unknown data
 show call data input
 show CID line
 show ACK line
 show calltype, hangup, hupmode, cidline and lineid
 if true, indicate cidline == lineid: check whitelist

 if true, indicate name of number on whitelist: skip hangup check
 if true, show cidline != lineid: skip hangup check
 show checked whitelist and blacklist for match or whitelist empty
 indicate match in blacklist or whitelist with values
 show hangup extension and arguments
 show default mode for hangup extension
 show using hangup mode

 show using recording
 show hangup extension return code
 show meaning of MESG code if known and discarded
 indicate Removed stale lockfile
 show unavailable modems during hangup processing

LEVEL2:

 show lines that start with a 3 digit number

 show client connect/disconnect
 indicate if client sent a HELLO Identification line
 indicate if client sent a HELLO Command line
 indicate if client command accepted
 indicate end of client hello lines
 indicate status of call log
 indicate if LineIDS sent to client
 indicate if server options sent to client

 indicate end of cobnnection startup
 indicate hangup pause, hangup not paused, or hangup enabled
 show number of times socket was zero in sequence when trying to remove client from
poll
 show client removed on write error
 show client not found in poll table
 indicate network client hung up

 indicate device or modem returned no data
 indicate end of call log or call log empty or no call log sent
 indicate end of connection startup
 show line sent to cidupdate
 show line sent to ncidutil
 show OPT lines
 show REQ: lines

 show INFO: lines
 show WRK: lines
 show RESP: lines
 indicate case where finishCID did not receive full call info

LEVEL1:

 show started with date and time

 show server version
 indicate if could not create ncidd logfile
 indicate name and location of ncidd logfile
 indicate if no config file or config file processed
 indicate set command skipped in config file
 indicate error in opening ncidd log file
 indicate what is configured to send to the clients

 show verbose level
 indicate data type sent to clients
 indicate alias file messages
 indicate if leading 1 needed for aliases
 indicate blacklist and whitelist file messages
 indicate alias, blacklist and whitelist total/maximum entries, if any
 indicate cid logfile messages

 indicate of no call logfile
 indicate name and location of call logfile
 indicate if no data logfile
 indicate name and location of data logfile
 show Telephone Line Identifier
 show TTY port opened
 show TTY port speed

 show name and location of TTY lockfile
 show modem query results
 indicate TTY port control signals enabled or disabled
 indicate Caller ID from a serial or USB device and optional gateways

 indicate Caller ID from a modem and optional gateways
 indicate Handles modem calls without Caller ID
 indicate Does not handle modem calls without Caller ID
 indicate Caller ID from gateways without modem support
 indicate hangup option
 show network port
 indicate not using PID file if no '-P' option

 indicate pid file already exists
 indicate found stale pidfile
 indicate cannot write pidfile
 indicate wrote pid in pidfile
 indicate end of startup
 indicate TTY in use with date and time
 indicate TTY free with date and time

 indicate cannot init TTY and terminated with date and time
 indicate Modem initialized.
 indicate Initialization string for modem is null.
 indicate Modem Chipset version
 indicate Modem set for CallerID.
 indicate Modem set for CallerID and Call Waiting.
 indicate Modem does or does not support FAX

 indicate Modem supports Snooping for call waiting
 indicate CallerID initialization string for modem is null.
 indicate CallerID TTY port initialized
 indicate serial device hung up and terminated with date and time
 indicate device error and terminated with date and time
 indicate serial device error and terminated with date and time
 indicate poll error

 indicate invalid request from serial device, terminated with date and time
 indicate Invalid Request, removed client
 indicate Write event not configured, removed client
 indicate device or modem read error
 indicate Device returns no data, Terminated with date and time
 indicate network connect error
 indicate network NOBLOCK error
 indicate too many network clients

 indicate network client read error
 indicate cid log is too large
 indicate sending log to client
 indicate removed pidfile
 indicate signal received and terminate program with date and time
 indicate SIGHUP received and reload alias files
 indicate SIGPIPE received and ignored with date and time

 indicate success or failure to parse ifaddr to set the interface
 indicate which country code is set for number formatting
 show number display format selected if country is NANPA
 show error in starting external cidupdate, ncidutil, and hangup scripts
 indicate hangup script did not return hangup or OK

 indicate unable to go off hook to do the hangup
 indicate trouble in going on hook to finish the hangup
 indicate no modem found for cidline - skipped hangup
 show the message text sent to clients by sysMesg

ncid2ncid gateway verbose levels

Higher levels include lower levels.

LEVELE

 indicate if no config file
 indicate if there is a config error
 show gethostname error

LEVEL9:

 (can only be set by the command line)
 not used

LEVEL8:

 (can only be set by the command line)
 not used

LEVEL7:

 not used

LEVEL6:

 not used

LEVEL5:

 not used

LEVEL4:

 indicate reading socket
 show call log lines received

LEVEL3:

 show all data received from all servers

LEVEL2:

 indicate line sent to receiving NCID server
 indicate line from receiving NCID server

LEVEL1:

 indicate cannot create or open existing logfile

 show start date and time
 show server version
 show command line
 indicate Debug mode
 indicate no config file or config file processed
 indicate set command skipped in config file
 show HELLO: IDENT:
 show HELLO: CMD:

 show error line in config file
 show verbose level
 indicate not using PID file, there was no '-P' option
 indicate found stale pidfile
 indicate wrote pid in pidfile
 show Receiving Host host:port
 show server greeting line

 show configured Sending Hosts host:port
 show configured servers greeting line
 indicate client disconnected
 indicate client reconnected
 indicate Hung Up
 indicate Poll Error
 indicate Removed client, invalid request

 indicate Removed client, write event not configured
 indicate line cannot be sent to receiving NCID server
 indicate removed pidfile
 show terminated with date and time

ncidnumberinfo verbose levels

Higher levels include lower levels.

LEVELE:

 indicate if a phone number must be given
 show usage for adding a phonenumber
 show system error
 show internal program error
 show Terminated on non-option errors

LEVEL9:

 not used

LEVEL8:

 exit normally when position in code reached

LEVEL7:

 not used

LEVEL6:

 not used

LEVEL5:

 not used

LEVEL4:

 not used

LEVEL3:

 show raw telephone number

LEVEL2:

 not used

LEVEL1:

 show start time
 show program name and version
 show command line options
 show verbose level
 indicate NANP country format used

 show terminated [by LEVEL8] with date and time

obi2ncid gateway verbose levels

Higher levels include lower levels.

LEVEL9:

 not used

LEVEL8:

 not used

LEVEL7:

 show call log from ncidd, if received

LEVEL6:

 indicate start and end of received packets

 filter received packets

LEVEL5:

 show call or message line from ncidd

 show log lines received from the obi

LEVEL4:

 show what matched on a log line from the obi
 show variables set by the match

LEVEL3:

 show CALL: line generated

 show CALLINFO: line generated
 indicate Outgoing call not completed

LEVEL2:

 not used

LEVEL1:

 show Started

 show command line and any options on separate lines
 show logfile name and opened as append or overwrite or could not open
 show processed config file or config file not found
 show name and version
 show verbose level
 show Hostname flag
 show IDENT

 show Command
 show Line ID
 show NCID address:port
 show delay time between retrying failed connection
 show debug mode if in debug mode
 show test mode if in test mode
 show PID or some PID problem or not using PID file

 show connected to NCID <address:port> or error exit
 show greeting line from NCID
 show listening port or error exit
 show exit on error
 show signals ingnored
 show NCID server disconnected if it goes away and trying to reconnect
 show terminated and signal that caused it

rn2ncid gateway verbose levels

Higher levels include lower levels.

LEVEL9:

 not used

LEVEL8:

 not used

LEVEL7:

 not used

LEVEL6:

 not used

LEVEL5:

 show call log from ncidd, if received
 show call or message line from ncidd
 show messgae line from remote notification

LEVEL4:

 not used

LEVEL3:

 show notification type
 show Call: line generated if type RING
 show NOT: line generated if type PING, Battery, SMS, MMS, or VOICEMAIL
 show notice of a SMS or MMS message
 show unknown notification type
 show notification type was rejected

LEVEL2:

 not used

LEVEL1:

 show Started
 show command line and any options on separate lines
 show logfile name and opened as append or overwrite or could not open

 show processed config file or config file not found
 show name and version
 show verbose level
 show HELLO: IDENT:
 show HELLO: CMD:
 show Line ID
 show debug mode if in debug mode
 show test mode if in test mode

 show reject option values or none
 show pid or some PID problem
 show connected to NCID <address:port> or error exit
 show greeting line from NCID
 show delay between each try to reconnect to server

 show listening port or error exit
 show NCID server disconnected if it goes away and trying to reconnect

sip2ncid gateway verbose levels

Higher levels include lower levels.

LEVEL9:

 (can only be set by the command line)

 show lines received from the NCID server

LEVEL8:

 not used

LEVEL7:

 not used

LEVEL6:

 not used

LEVEL5:

 not used (reserved for hex dumps)

LEVEL4:

 show startup lines from server
 show packet from and to addresses
 show packet source and destination ports
 show packet data size in bytes

 show linenum array and contact as they are compared for an INVITE
 indicate checked for outgoing call
 show INVITE contact was not registered for out call
 indicate Alarm Timeout and msgsent flag
 show call log if sent
 show Loopback encapsulation type

LEVEL3:

 show SIP packets
 give character count of lines received from the NCID server
 show protocol information for the packet
 show warning SIP packet truncated
 indicate examining packet for line label
 indicate number, or name and number, in packet

 show alarm timeout, pcap_loop() return value and msgsent flags
 show calls table search, additions and deletions

LEVEL2:

 show CALL and CALLINFO lines
 show packet number received and date
 show request line
 show outgoing call

 show cidmsg log line generated
 show trying responses
 show Warning: could not connect to the NCID server

LEVEL1:

 indicate cannot create or open existing logfile
 show start date and time
 show server and API versions

 indicate test mode
 indicate Debug mode
 indicate no config file
 indicate config file processed
 indicate set command skipped in config file
 show error line in config file
 indicate Reading from dumpfile

 indicate Writing to dumpfile
 show verbose level
 show HELLO: IDENT:
 show HELLO: CMD:
 show Line ID
 show status: Warn clients: 'No SIP packets' & 'SIP packets returned'
 show NCID status

 show network interface used
 show applied filter
 indicate no filter applied
 indicate No SIP packets received
 indicate SIP packets returned
 indicate not using PID file, there was no '-P' option
 indicate pid file already exists

 indicate found stale pidfile
 indicate wrote pid in pidfile
 alarm SIP packets returned
 Warning: SIP Packet truncated
 Warning: simultaneous calls exceeded
 invalid IP header length
 show registered line number

 indicate Number of telephone lines exceeded
 show CID line sent to NCID
 indicate packet parse problems
 indicate caller hangup before answer
 indicate hangup after answer
 Warning: cannot get CallID
 Warning: Warning no SIP packets

 indicate pcap_loop error
 indicate removed pidfile

 indicate program terminated with date and time
 show extension size
 show pcap linktype for the device

wc2ncid gateway verbose levels

Higher levels include lower levels.

LEVEL9:

 not used

LEVEL8:

 not used

LEVEL7:

 not used

LEVEL6:

 not used

LEVEL5:

 show call log from ncidd, if received
 show Caller ID line from ncidd

LEVEL4:

 show hex dump of received packet

LEVEL3:

 show unit and serial numbers from Whozz Calling device

 show Call line from Whozz Calling device

LEVEL2:

 show CALL and CALLINFO lines sent to ncidd
 show Phone Off Hook
 show Phone On Hook

LEVEL1:

 show Started
 show command line and any options on separate lines
 show name and version
 show verbose level
 show debug mode if in debug mode
 show test mode if in test mode
 show logfile name and whether opened as append or overwrite

 show logfile could not be opened
 show processed config file or config file not found
 show Trying to connect to <ipaddr>:<port>
 show Connected to NCID server at <ipaddr>:<port

 show Hostname flag
 show IDENT
 show discovered WV devices if more than 1
 show Device WC-<number> at address
 show Sent ^^Id-Z<mmddhhmm>" to <IPaddress>:<port> to set internal clock
 show Command
 show connected to NCID <address:port> or error exit

 show greeting line from NCID
 show opened broadcast port
 show closed broadcast port
 show opened WC device port
 show closed WC device port
 show commands sent
 show Pause after sending ^^Id-V

 show checking and setting required flags
 indicate command data received or timeout in seconds
 show data from some commands
 show Waiting for calls from <server:port>

xdmf2ncid gateway verbose levels

Higher levels include lower levels.

LEVEL9:

 not used

LEVEL8:

 not used

LEVEL7:

 not used

LEVEL6:

 indicate start and end of received packets
 filter received packets

LEVEL5:

 show call log from ncidd, if received
 show call or message line from ncidd

LEVEL4:

 indicate U counts from Holtek HT9032D

 show Hex Dump of Message
 indicate <SDMF|XDMF> packet and bytes to checksum
 show Message Length
 show Calculated Checksum Good
 show Got Call Type
 show Got Date & Time
 show Got Caller Number
 show Got Why No Number

 show Got Caller Name
 show Got Why No Name
 show Got unknown
 show Detected Call type

LEVEL3:

 indicate data received from Holtek HT9032D

 indicate Ignored Holtek HT9032D noise packet
 indicate detected Comet device
 indicate ASCII Hex detected
 indicate Detected XDMF Hex message
 show Received Message
 show Calculated Checksum Bad, if bad
 show Call line sent to server

 indicate ERROR - not an XDMF packet

LEVEL2:

 not used

LEVEL1:

 show Started
 show command line and any options on separate lines

 show logfile name and opened as append or overwrite or could not open
 show processed config file or config file not found
 show name and version
 indicate configured for Holtek HT9032D
 indicate configured for a Comet or modem
 show verbose level
 show Hostname Flag

 show HELLO: IDENT:
 show HELLO: CMD:
 show Line ID
 show NCID <address:port>
 show delay time between retrying failed connection
 show <ttyport>
 show debug mode if in debug mode

 show test mode if in test mode
 show PID or some PID problem or not using PID file
 show connected to NCID <address:port> or error exit
 show greeting line from NCID

 show Connected to USB port <ttyport>
 show Waiting for calls from <ttyport>
 show exit on error
 show signals ingnored

 show NCID server disconnected if it goes away and trying to reconnect
 show terminated and signal that caused it

NCID Contributors

Table of Contents

Any omissions are entirely my fault. Please notify jlc of any corrections or additions.

John L. Chmielewski

Designed, developed and wrote most of the programs.

Mark Salyzyn

Ported ncidd to BSD and Macintosh.

Wrote getopt.c and poll.c .

Mace Moneta

Wrote nciduser , which was the basis for ncid-speak .
Contributed ideas and code to ncid client.
Contributed the Mac OS X portion of ncid-speak .

Dan Lawrence

Contributed to ncid-email so paging would work.
Contributed information on freewrap for ncid client on Windows.

Aron Green

Helped fix termios settings to work with FreeBSD.

Contributed ncid.sh and ncidd.sh start/stop scripts for FreeBSD.
Contributed ideas for ncidd and ncid .

Troy Carpenter

Developed ncid-samba to send CID info to Samba for a Windows popup.

Lyman Epp

Wrote the first version of ncidrotate in python.

Rick Matthews

Provided information on distinctive ring.

Michael Nygren

Provided information on the +GCI modem code, so CID will work with
modems that need a country code.

Mitch Riley

Provided information needed to create the ncid-mythtv script.

Roger Knobber

mailto:jlc@users.sourceforge.net
mailto:jlc@users.sourceforge.net
mailto:mark@bohica.net
mailto:dan@cutthatout.com
http://freewrap.sourceforge.net/
mailto:agreen@pobox.com
mailto:troy@carpenter.cx
mailto:lyman@epptech.com

Provided patch for strdate() in ncidd.c to fix null pointer in
gettimeofday() in version 0.61.

Rich West

Helps maintain the ncid-mythtv module.
Provided an NSIS script as a basic installer for the ncid
Windows client.

Clayton O'Neill

Modified ncidd to be able to run with no serial device.
Added the ability to inject CID from clients.
Contributed the ncid-sipinject program which was renamed
ncidsip .

David LaPorte

Improved ncidsip to work with a missing name.
Improved ncidsip to detect outgoing calls containing a SIP REGISTER
packet so they are not treated as incoming calls.

Michael Lasevich

Wrote and contributed yac2ncid .
ncid-yac was developed from a module he wrote.

Helped write the man pages.

Randy Rasmussen

Wrote and contributed the ncid-kpopup client output module.

Jonathan Wolf

Hacked ncid to provide ring indication when Caller ID not available.
(His hack was not used, but his feature was added to ncidd .)

littlepepper

Provided the Mac OS X modem init string for the iMac.

Marko Koski-Vähälä

Contributed ncid client code to format numbers for Sweden.
The client can now format numbers for "US" and "SE".

Chris Lenderman

Helped rewrite sendLog() code to eliminate corruption sending
large log files (greater than 2,000 lines).
Converted testclient from using netcat to using sockets.

Maintained the Windows version of NCIDPop .
Created (and maintains) a complete rewrite of NCIDPop in Java
making NCIDPop cross-platform for Mac, Windows, Linux.

Created (and maintains) `NCID Android` client.

Todd Andrews

Corrected problems in the INSTALL document.

mailto:Rich.West@wesmo.com
mailto:coneill@oneill.net
mailto:dlaPorte@users.sourceforge.net
mailto:michael@lasevich.net
mailto:randyr505@gmail.com
mailto:littlepepper@users.sourceforge.net
mailto:marko@koski-vahala.com
mailto:chris@lenderman.com
mailto:taa@pobox.com

Helped with server testing and fixing various Mac OS X problems.
Provided a server fix for the hangup configuration/option
problem on Mac OS X.
Developed ncid-nma output module which became part of ncid-notify .
Developed wc2ncid gateway.
Helped improve various NCID documentation.
Did a lot of work for the NCID 0.85 and 0.86 distributions.
In general, helps with various NCID programs and documentation.
provided help with verious NCID issues through the years

Jeff Rabin

Helped with the ncidd hangup option by testing, reviewing
documentation, suggesting improvements and providing patches.
Created the ncidd configuration option ignore1 patches.

[Neven Ćosić (Sensei)](mailto:senseitcom (at) email (dot) t (hyphen) com (dot) hr)

Added country code HR (Croatia) to ncid and ncid.conf .
Added alternate date formats and separators.
Wrote a ncid-tiny module that became the basis for ncid-alert .
Introduced and tested the CTI Comet USB Caller ID device.
Introduced and tested the udev rules.
Added CallLog option to the NCID client for the NoGUI mode.
Added NightMode option to the NCID client for the GUI mode.
Wrote NCID Alert Autostart file that became the basis for a modified
version that is generated from the ncid.desktop file when needed.
Added udev-action auxiliary script.

Introduced and edited the documentation in PDF format.
Added alert_call and alert_message options to ncid-alert ,
makes Caller ID and Integral Message or Notice data shown
in Alert messages configurable.
Added YearDot option to the NCID client.
Introduced and tested the Holtek HT9032D based PSTN Caller ID module.
In general, helps with various NCID programs and documentation.

Steve Limkemann

Modified ncidd to output CID information quickly if a name is not
part of the Caller ID received.
Improved the cidupdate tool.

Improved the ncid GUI, by adding multiple features such as window
resizing and the ability to change font names and font sizes.
Added wakeup feature to ncid and wrote the ncid-wakeup module.
In general, helps with various NCID programs.

Tod Cox

Ported NCID to the Raspberry Pi running the Raspbian OS.

Nicholas Riley

Maintained NCIDPop for Mac OS X.

Alexei Kosut

Original developer of NCIDPop for Mac OS X and Windows.

mailto:jeff@jrgator.com
mailto:stevelim@wwnet.com
mailto:btcox@stetson.edu
mailto:nriley@sabi.net
mailto:akosut@cs.stanford.edu

David J. Lauria

developed ncid-fly for the TiVo
helped with ncidmod for the TiVo
provided NCID compatibility into his cidrss Tivoweb module
provided help with verious NCID issues through the years

Reece Pollack

Provided patch to ncidd for regular expressions

Kris Jensen

developed procedure for creating the announce.rmd file.
donated modem recording files:
NumberDisconnected.wav and NumberDisconnected.rmd

Pete Bekatoros

donated modem recording files:
CallingDeposit.pvf CallingDeposit.rmd
CannotBeCompleted.pvf CannotBeCompleted.rmd
NotInService.pvf NotInService.rmd

Mike Stember

Developed a way to process the United States Federal Communications Commission (FCC)
robocaller/telemarketer data file in Excel, filter out the most likely candidates and create a text file
that is NCID-friendly.
Volunteered to monitor the FCC site for updates and continues to maintain the NCID-friendly text file
as a download on the NCID Wiki.

Randy Tarantino

created ncid-mysql output module to log call data to MySQL database

Reece

fixed voice hangup to work with USB modems
see bug #25

Ed Attfield

wrote part of the DIAL code
wrote hangup-fakenum
updated [FCC Data on Unwanted Calls](FCC2ncid at
https://sourceforge.net/p/ncid/wiki/FCC%20Data%20on%20Unwanted%20Calls/)
rewrote saveSend() in ncidd.c
cleaned up ncidd.c

Jason Trinklein

provided steps to use Linphone as a SIP client

Jon Tulk

created the hangup-greylist extension and its man pages

Bruno Grasland

submitted bug reports and fixes for ncidd, ncid-mythtv and ncidutil
implemented WID (call waiting) for modems that support it

mailto:djlauria@gmail.com
mailto:rrpollack@users.sf.net
mailto:kjen@users.sf.net
mailto:snxx@users.sf.net
mailto:ncid@thestembers.com
mailto:tarantir@users.sf.net
mailto:rrpollack@users.sf.net
https://sourceforge.net/p/ncid/bugs/25/
mailto:ed_attfield@users.sf.net
https://sourceforge.net/p/ncid/discussion/275236/thread/9907d304/
https://sourceforge.net/p/ncid/wiki/FCC%20Data%20on%20Unwanted%20Calls/
mailto:jason@trinklein.net
http://localhost:34275/jon.tulk@comcast.net
http://localhost:34275/b.sletteland@orange.fr%3E

Proposed and implemented integration of libphonenumber in nicd for international number
formating and displaying of phone numbers geographical data.
wrote libcarrier (c++ derivative of libgeocoding) in order to be able to display phone number carriers
in ncid
wrote the original scripts for carrier metadata generation for US/CAN/FR/JP

New Feature Requests, Bug Reports, Testing Fixes and Testing New features

Adam 'Starblazer' Romberg
Andy Nunez
Andy Writter
Aron Green
Carl Johnson
Charlie Heitzig
Dan Lawrence
David LaPorte
George Johnson
Joe Nardone
Jonathan Wolf
Ken Appell
Lloyd Stahlbush
Mace Moneta
Marko Koski-Vähälä
Matt Short
Michael Lasevich
Nicholas Davies
Paul Miller
Phil Fitzpatrick
Rick Matthews
Steve Forman
Steve Major
Troy Carpenter

Feedback On Working Modems

Derek Huxley

TODO

Table of Contents

TODO Lists

TODO

Maybe

The TODO list (in no particular order)

Add ncid.exe to the Windows tray
Add a GUI configuration program for the server, client, modules and gateways
Create a Mac OS X installer
Allow wc2ncid/wct to configure devices out-of-subnet

Add hangup support to gateways that can hangup a call
post a NEWS item for INSTALL-Mac when MacPorts fixes hidapi package that currently does not install
hidapi_darwin.h

Make line terminator usage consistent between server, clients, gateways (<CR>, <LF>, <NL>)

The Maybe list (in no particular order)

Add blacklist/whitelist support to wc2ncid gateway to block calls
Add support for PBX
Add an iax2 gateway
Add ability for client to get name from address book.
Add ringtone support (NCIDpop and ncid-applet have ringtone support)
Add a Firefox module
Add SSL between server and client for secure use over Internet
Use separate ports for clients and gateways
Add SIP blocking and recording capability
Add a Modem On Hold feature or at least display the Caller ID during a modem data call
Add XBMC support
Add graphics to view image of who is calling
Allow Android gateway to tell an Android phone to hangup
Redimensionable columns in NCID client
Display voicemail state (# of mesg) in separate widget in NCID client

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free software for all its users. We, the
Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any
other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them if
you wish), that you receive source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify

https://fsf.org/

it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps:

1. assert copyright on the software, and
2. offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free
software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed,
so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to
protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict
development and use of software on general-purpose computers, but in those that do, we wish to avoid the
special danger that patents applied to a free program could make it effectively proprietary. To prevent this,
the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

This License refers to version 3 of the GNU General Public License.

Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

The Program refers to any copyrightable work licensed under this License. Each licensee is addressed as you.
Licensees and recipients may be individuals or organizations.

To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of the
earlier work or a work based on the earlier work.

A covered work means either the unmodified Program or a work based on the Program.

To propagate a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with or without modification), making
available to the public, and in some countries other activities as well.

To convey a work means any kind of propagation that enables other parties to make or receive copies. Mere
interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays Appropriate Legal Notices to the extent that it includes a convenient and
prominently visible feature that

1. displays an appropriate copyright notice, and
2. tells the user that there is no warranty for the work (except to the extent that warranties are

provided), that licensees may convey the work under this License, and how to view a copy of this
License.

If the interface presents a list of user commands or options, such as a menu, a prominent item in the list
meets this criterion.

1. Source Code.

The source code for a work means the preferred form of the work for making modifications to it. Object code
means any non-source form of a work.

A Standard Interface means an interface that either is an official standard defined by a recognized standards
body, or, in the case of interfaces specified for a particular programming language, one that is widely used
among developers working in that language.

The System Libraries of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A Major
Component, in this context, means a major essential component (kernel, window system, and so on) of the
specific operating system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to control
those activities. However, it does not include the work's System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in performing those activities but which are not
part of the work. For example, Corresponding Source includes interface definition files associated with source
files for the work, and the source code for shared libraries and dynamically linked subprograms that the work
is specifically designed to require, such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running a covered work is covered by this License only if the
output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or
other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your
license otherwise remains in force. You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with facilities for running those works, provided
that you comply with the terms of this License in conveying all material for which you do not control
copyright. Those thus making or running the covered works for you must do so exclusively on your behalf,

under your direction and control, on terms that prohibit them from making any copies of your copyrighted
material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing
is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar
laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or modification of the work as a means of
enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all
notices stating that this License and any non-permissive terms added in accord with section 7 apply to the
code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along
with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.
c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission if
you have separately received it.
d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if
the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need
not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or on
a volume of a storage or distribution medium, is called an aggregate if the compilation and its resulting
copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual
works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either

1. a copy of the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or

2. access to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.
d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may
be on a different server operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Library, need not be included in conveying the object code work.

A User Product is either

1. a consumer product, which means any tangible personal property which is normally used for personal,
family, or household purposes, or

2. anything designed or sold for incorporation into a dwelling.

In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user, normally used refers to a typical or common
use of that class of product, regardless of the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless
of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses
represent the only significant mode of use of the product.

Installation Information for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modification
has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and
the conveying occurs as part of a transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in
a format that is publicly documented (and with an implementation available to the public in source code
form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

Additional permissions are terms that supplement the terms of this License by making exceptions from one or
more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as
though they were included in this License, to the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be used separately under those permissions, but
the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from
that copy, or from any part of it. (Additional permissions may be written to require their own removal in
certain cases when you modify the work.) You may place additional permissions on material, added by you to
a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or
b) Requiring preservation of specified reasonable legal notices or author attributions in that material
or in the Appropriate Legal Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or
f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered further restrictions within the meaning of section 10.
If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License
along with a term that is a further restriction, you may remove that term. If a license document contains a
further restriction but permits relicensing or conveying under this License, you may add to a covered work
material governed by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or
stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated

a) provisionally, unless and until the copyright holder explicitly and finally terminates your license,
and
b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An entity transaction is a transaction transferring control of an organization, or substantially all assets of one,
or subdividing an organization, or merging organizations. If propagation of a covered work results from an
entity transaction, each party to that transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a
right to possession of the Corresponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted
under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit)

alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the
Program or any portion of it.

11. Patents.

A contributor is a copyright holder who authorizes use under this License of the Program or a work on which
the Program is based. The work thus licensed is called the contributor's contributor version.

A contributor's essential patent claims are all patent claims owned or controlled by the contributor, whether
already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of
making, using, or selling its contributor version, but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For purposes of this definition, control
includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the
contents of its contributor version.

In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To grant such a patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly
available network server or other readily accessible means, then you must either

1. cause the Corresponding Source to be so available, or
2. arrange to deprive yourself of the benefit of the patent license for this particular work, or
3. arrange, in a manner consistent with the requirements of this License, to extend the patent license to

downstream recipients.

Knowingly relying means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work in a country, would infringe one or
more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then
the patent license you grant is automatically extended to all recipients of the covered work and works based
on it.

A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the exercise
of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this
License. You may not convey a covered work if you are a party to an arrangement with a third party that is in
the business of distributing software, under which you make payment to the third party based on the extent
of your activity of conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license

a) in connection with copies of the covered work conveyed by you (or copies made from those copies),
or
b) primarily for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only
way you could satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work
with a work licensed under version 3 of the GNU Affero General Public License into a single combined work,
and to convey the resulting work. The terms of this License will continue to apply to the part which is the
covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning
interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of following
the terms and conditions either of that numbered version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can
be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that
version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are
imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file
to most effectively state the exclusion of warranty; and each file should have at least the copyright line and a
pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive
mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands show w and show c should show the appropriate parts of the General Public
License. Of course, your program's commands might be different; for a GUI interface, you would use an about
box.

You should also get your employer (if you work as a programmer) or school, if any, to sign a copyright
disclaimer for the program, if necessary. For more information on this, and how to apply and follow the GNU
GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead
of this License. But first, please read https://www.gnu.org/philosophy/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/philosophy/why-not-lgpl.html

