
NCID API Documentation

API 1.13
Last edited: April 7, 2023
Copyright © 2010-2023

John L Chmielewski

This document contains information needed to develop servers, clients, client output modules and gateways for NCID (Network Caller ID).

All example phone numbers and names contained herein are intended to be fictional.

There are 5 feature sets of NCID conformance:

Feature Set 1: Modem and Device Support (required)

Feature Set 2: Gateway Support (optional)

Feature Set 3: Client Job Support (optional)

Feature Set 4: Acknowledgment Support (optional)

Feature Set 5: Relay Job Support (optional)

Table of Contents

Before you begin

ABOUT CONFIGURATION OPTIONS FOR SERVER IMPLEMENTATIONS

ABOUT END-OF-LINE TERMINATORS

ABOUT LINE TYPES AND FIELD PAIRS

GUIDELINES FOR CALCULATING CALL DURATION

ENSURING CONNECTIVITY WITH THE SERVER

COMPANION DOCUMENTS

Call/Message Line Types, Categories and Structure (new in API 1.7)

OVERVIEW

TABLE

{CALLTYPE} CATEGORY STRUCTURE

{MSGTYPE} CATEGORY STRUCTURE

Server Output Lines

Client/Gateway Output Lines

Feature Set 1: Modem and Device Support

SERVER IMPLEMENTATION

Server Output Lines

Server Alias Support

Server Hangup Support

Modem-to-Server

Optional Server Extensions

Optional Server Hangup Extension

Optional NetCallerID Device-to-Server

Optional TCI Device-to-Server (new in API 1.1)

CLIENT IMPLEMENTATION

Client-to-Server

Optional Client-to-Module

Optional Client-to-TiVo Display (Removed in API 1.6)

Feature Set 2: Gateway Support

SERVER IMPLEMENTATION

XDMF Input (new in API 1.8)

Server Output Lines

GATEWAY IMPLEMENTATION

Gateway-to-Server

Forwarding Gateway (Server-to-Server) (new in API 1.4)

CLIENT IMPLEMENTATION

Optional Client-to-Module

Feature Set 3: Client Job Support

OVERVIEW OF AVAILABLE CLIENT JOBS

SERVER IMPLEMENTATION

Server Output Lines

CLIENT IMPLEMENTATION

Client-to-Server

REQUIREMENTS FOR DIAL-A-NUMBER CLIENT JOB (new in API 1.6)

lineid

Server Implementation

Client Implementation

CLIENT JOB EXAMPLES

Feature Set 4: Acknowledgment Support

SERVER IMPLEMENTATION

Server Output Lines

GATEWAY IMPLEMENTATION

Gateway-to-Server

CLIENT IMPLEMENTATION

Client-to-Server

Feature Set 5: Relay Job Support (new in API 1.4)

RELAY JOB OVERVIEW

SERVER IMPLEMENTATION

RELAY JOB ORIGIN (RJO) IMPLEMENTATION

RJO Line Type Definition

RELAY JOB TARGET (RJT) IMPLEMENTATION

RJT Line Type Definition

RELAY JOB EXAMPLES

Sending a Text Message

Emulation Programs and Test Files

Appendix A: Quick Reference List of all {CALLTYPE} and {MSGTYPE} line types

Appendix B: Index to all line type definitions

Appendix C: Quick Reference List of all server configuration settings

Appendix D: More info about modem MESG hexadecimal characters

Appendix E: SMS Relay Job sequence diagram (new in API 1.4)

Appendix F: Index to all field pair definitions

Appendix G: Field pair definitions

API Version Change History

Release Summary

Version 1.13

Version 1.12

Version 1.11

Version 1.10

Version 1.9

Version 1.8

Version 1.7

Version 1.6

Version 1.5

Version 1.4

Version 1.3

Version 1.2

Version 1.1

Version 1.0

Documentation Change History

April 19, 2022

August 1, 2021

April 26, 2019

October 27, 2018

August 17, 2018

May 31, 2018

November 5, 2017

November 6, 2016

September 30, 2016

July 23, 2016

May 7, 2016

December 29, 2015

Before you begin

ABOUT CONFIGURATION OPTIONS FOR SERVER IMPLEMENTATIONS

This API document attempts to describe server interactions with
gateways, clients, extensions, etc. without regard to a specific operating
system or specific programming methods and conventions. However, for the
purpose of reading this document we will reference

configuration options
using the following convention:

<configuration file name::setting name>

In the case of the official NCID distribution for Unix/Linux platforms,
there are several configuration files. Here are just a few of them:

Purpose Unix/Linux File Name Convention used in this API

Server settings ncidd.conf <ncidd.conf::setting name>

Alias mappings ncidd.alias <ncidd.alias::alias definition>

Blacklist ncidd.blacklist <ncidd.blacklist::call name or number>

Whitelist ncidd.whitelist <ncidd.whitelist::call name or number>

Universal Client settings ncid.conf <ncid.conf::setting name>

SIP Gateway settings sip2ncid.conf <sip2ncid.conf::setting name>

YAC Gateway settings yac2ncid.conf <yac2ncid.conf::setting name>

XDMF Gateway settings xdmf2ncid.conf <xdmf2ncid.conf::setting name>

An example of a setting name in the server configuration file would be lockfile . Within this document you would see the setting

referenced as ncidd.conf::lockfile.

If a developer wishes to create his or her own NCID server, any configuration file name and setting name convention desired can be used. For
example, an NCID server for Windows might use a file name called
ncid-server.ini and a setting called LockFile=.

Using the <configuration file name::setting name> convention allows a developer to correlate the setting names referenced in this API
with the developer's own conventions. In this regard, you can think of
<configuration file name::setting name> as a reference to a concept

or definition. ncidd.conf::lockfile therefore refers to the path of the server's serial port lock file. An alphabetized summary of all server
options, including a brief description, can be found
in Appendix C: Quick Reference List of all server configuration settings.

ABOUT END-OF-LINE TERMINATORS

Carriage return characters may appear in this document as <CR>, x0D, or \r. Line feeds a.k.a. new lines may appear as <LF>, <NL>, x0A, or
\n.

Because of NCID's Unix origin, generally speaking, line feeds are the preferred line terminator. This applies not only to client/server
communications but also to reading files (e.g., ncidd.conf, ncidd.alias, ncid.conf, ncid-mysql.conf, etc.) as well as writing files (e.g.,

ncidd.log, ncidd.alias, cidcall.log, etc.).

Even though line feeds are preferred, the Unix distributions of NCID will generally play it safe and look for both <CR> and <LF>,
stripping
these characters prior to storing data in memory or otherwise processing the read/received data. In other words, NCID does not enforce
which end-of-line terminator is used when reading files or receiving data,
it just requires a minimum of one (<CR> or <LF>) to be used.

The exception is when NCID must write or send data to third party hardware, processes, or protocols. In these cases, third party
requirements will dictate the end-of-line terminators to be used. NCID already takes this exception into account for all officially supported

third party interactions.

ABOUT LINE TYPES AND FIELD PAIRS

The reason for the following restrictions is to allow future NCID programs and scripts to be as backward compatible as possible. This is
particularly important in the case of third party software that may
not be updated at the same time as a new NCID release.

Line Types

This document uses XXX, XXX:,
XXXLOG:, etc. where XXX
is a place holder when discussing something that applies to multiple
line
types.

It is very important for a program or script to ignore line types
(e.g., 200, 210, CID:, HUP:, REQ: etc.) that it does not recognize. It
should not trigger a fatal error.

Field Pairs - Overview

A field pair is defined as <field label><field data>,
with zero or more delimiter characters between them.

The very first field pair for a line might begin with the three characters ### to indicate the data is being sent TO the server, or begin
with the three characters *** to indicate the data is being
received FROM the server.

It is very important NOT to assume that the order of field pairs will always be the same across NCID versions.

For example, if today a hypothetical layout of field pairs looks like this:

XYZ: ***DATE*<date>*TIME*<time>*LINE*<lineid>*NMBR*<number>*MESG*<hexchars>*NAME*<name>*

There is no guarantee that the order won't be changed. Perhaps a
future version would swap MESG and NAME:

XYZ: ***DATE*<date>*TIME*<time>*LINE*<lineid>*NMBR*<number>*NAME*<name>*MESG*<hexchars>*

Another example showing ###/.../+++ field delimiters for the field pairs:

ABCD: ###DATE<datetime>...CALL<type>...LINE<lineid>...NMBR<number>... NAME<name>+++

might someday get changed to put NMBR and NAME first:

ABCD: ###NMBR<number>...NAME<name>...DATE<datetime>...CALL<type>... LINE<lineid>+++

Any programs or scripts you develop on your own must be flexible in
parsing out <field label><field data>, wherever they
might be
located in a line.

**It is very important for a program or script to ignore
<field label><field data> pairs that it does not
recognize. **

For example, if at some point in the future a new field
pair with the hypothetical label of JJJJ was added, your programs
or scripts
should not trigger a fatal error. And it might be
added at any location in the line, not just at the end:

XYZ: ***DATE*<date>*TIME*<time>*LINE*<lineid>*NMBR*<number>*JJJJ*<data>*MESG*<hexchars>*NAME*

<name>*

ABCD: ###DATE<datetime>...CALL<type>...LINE<lineid>...NMBR<number>... JJJJ<data>...NAME<name>+++

It is expected that if a field label is present there will also be field data.

Do not leave <field data> empty (null). Although this is not strictly enforced you may get unpredictable results. The best practice is
to use the special reserved word or phrase assigned
to a field pair for this purpose. For example, the <field data>
for an unknown

NAME should be NO NAME; for an unknown NMBR use NO-NUMBER.

Clients should allow for the <field data>
to be a single dash to suppress the text from being displayed, that is, if <field data>
contains a dash don't show anything.

Field Pairs - Frequently Used

Click on a link to be taken to its definition.

Field Label Description

DATE date

TIME time

LINE phone line identifier

NMBR phone number

FNMBR
formatted phone number

(new in API 1.11)

NTYPE
phone number's device type

(new in API 1.11)

CARI
phone number's carrier name

(new in API 1.11)

CTRY
phone number's two-letter uppercase country code

(new in API 1.11)

LOCA
phone number's location within the country

(new in API 1.11)

NAME caller's name

GUIDELINES FOR CALCULATING CALL DURATION (new in API 1.12)

NCID 1.13 includes an enhanced Universal Client with an option to
show incoming/outgoing call duration. There is no field pair for
duration.

This section provides guidelines on how you could
implement call duration by using the SCALL and ECALL field pairs, or
talk duration using
the PCALL and ECALL field pairs in your own clients and gateways.
The PCALL field pair is new in API 1.13.
These field pairs are present in the

END: line type.
This section also describes how the enhanced Universal Client shows
call duration at call completion.

The SCALL and ECALL field pairs have been part of NCID since release 0.86.1. The client
DURATION column was introduced in NCID 1.13. The
PCALL
field pair was introduced in NCID 1.14. The DURATION column
was changed to DURATION-C for call durations and
DURATION-T for

talk durations in NCID 1.14.

Call duration can only be calculated for input devices and
gateways that are able to detect when a call begins and ends.
Talk duration can
only be calculated for devices that detect
pickup and the end of a call.

Some input devices and gateways already calculate their own call
duration. Some, of those, only have a minimum resolution in
minutes.
When properly implemented, NCID can track call duration
with a minimum resolution in seconds.

Simply put, call duration is calculated by first converting
each human readable SCALL/ECALL or PCALL/ECALL field pairs into seconds,
then
subtracting the converted SCALL or PCALL seconds from the converted
ECALL seconds. The result is then converted back into hours, minutes,

and seconds
for the client to display in the DURATION-C or DURATION-T column.

Call duration caculation with the start and end hour the same, and ignored:

OUT: *DATE*03032022*TIME*0935*LINE*WC09*NMBR*4185558765*MESG*NONE*FNMBR*418-555-

8765*NTYPE*FIX/CELL*CTRY*US*LOCA*California*CARI*NEW CINGULAR WIRELESS PCS LLC*NAME*WIRELESS CALLER*

END: *HTYPE*BYE*DATE*03032022*TIME*0935*SCALL*03/03/2022 09:34:59*ECALL*03/03/2022

09:37:38*CTYPE*OUT*LINE*WC09*NMBR*4185558765*FNMBR*418-555-

8765*NTYPE*FIX/CELL*CTRY*US*LOCA*California*CARI*NEW CINGULAR WIRELESS PCS LLC*NAME*WIRELESS CALLER*

Call duration = End - start = 09:37:32 - 09:34:59 = 37*60+34 - 34*60+59 = 2254-2099 = 155 seconds = 02

min 35 sec = 02:35

Client display in DURATION-C column: 00:02:35

Call duration caculation with the start and end hour different

OUT: DATE03032022TIME0939LINEWC09NMBR4185558765MESGNONEFNMBR418-555-
8765NTYPEFIX/CELLCTRYUSLOCACaliforniaCARINEW CINGULAR WIRELESS PCS LLCNAMEWIRELESS CALLER*

END: HTYPEBYEDATE03032022TIME0939SCALL03/03/2022 09:39:18ECALL03/03/2022
10:04:36CTYPEOUTLINEWC09NMBR4185558765FNMBR418-555-8765NTYPEFIX/CELLCTRYUSLOCACaliforniaCARINEW CINGULAR

WIRELESS PCS LLCNAMEWIRELESS CALLER*

Duration = End - start = 10:04:36 - 09:39:18 = 10*60*60+4*60+36 - 09*60*60+39*60*18 = 36276-34758 = 25

min 18 sec = 25:18

Client display in DURATION-C column: 00:25:18

ENSURING CONNECTIVITY WITH THE SERVER

There are three different methods that clients and gateways can use
to test their connection to the server.

\n (newline)

Supported in Feature Set 1. This is the most basic method. A client or gateway simply sends a \n (newline) to
the server and checks for
errors. The server will make a note in its
log that it received a blank line, but otherwise ignores it. The server does not send any response.

REQ: YO

Supported in Feature Set 4. A client or gateway can send REQ: YO and expect an
ACK: REQ YO response from the server.

REQ: ACK

Supported in Feature Set 4. A client or gateway can send REQ: ACK <commands and arguments> and expect an ACK: REQ ACK
<commands and arguments> response from the server. ACK: REQ ACK sets an "ack" flag for the
client that tells the server to acknowledge
gateway CALL:, CALLINFO:
and NOT: lines. In other words, the server is expected to echo back all commands and arguments it receives.

COMPANION DOCUMENTS

You may wish to have the following documents handy as you work with
the API:

User Manual:

"Using NCID" chapter -> "Using Aliases" section

"Using NCID" chapter -> "Using Hangup" section

https://ncid.sourceforge.io/doc/NCID-UserManual.html#alias_top
https://ncid.sourceforge.io/doc/NCID-UserManual.html#hangup_top

Call/Message Line Types, Categories and Structure (new in API 1.7)

OVERVIEW

New NCID releases are often accompanied by new line types for call- and/or message-type data. The actual structure of the data is usually
identical with already defined line types and they differ only by the XXX: code at the beginning of each line.

In order to remove a significant amount of redundant info in this API, we've introduced the concept of category types. As new line types are
added that have the same structure, they'll be assigned to a category.

The categories have a secondary benefit in that they will make it easier to insure backward compatibility with output modules. Prior to API
1.7 it was necessary for end users to carefully examine their customized output module configuration files when upgrading to a new NCID
release. If a new line type was added, it usually meant that the configuration file would need to be manually edited in order to make use of
the new line type. Now, whenever possible and practical, line type categories can be used in the configuration files and new NCID releases

will automatically include the new line types, all without requiring customized configuration files to be manually edited.

Configuration files can still explicitly use line types if desired or if the use of categories is not practical.

Over time, we'll be updating all documentation to use the categories. This will result in less maintenance work for us.

TABLE

The FS and API columns, respectively, indicate the minimum Feature Set and API version required.

Click on a link to be taken to its definition.

Type Category Description FS API

1 BLK: CALLTYPE Blacklisted Call Blocked 2 1.0

2 CID: CALLTYPE Incoming Call 1 1.0

3 HUP: CALLTYPE Blacklisted Call Hangup 1 1.0

4 MWI: CALLTYPE Voicemail Message Waiting 2 1.7

5 OUT: CALLTYPE Outgoing Call 2 1.0

6 PID: CALLTYPE Incoming Smartphone Call 2 1.0

7 PUT: CALLTYPE Outgoing Smartphone Call 2 1.7

8 RID: CALLTYPE Ringback Call 2 1.7

9 WID: CALLTYPE Call Waiting Caller ID 2 1.1

10 MSG: MSGTYPE

Message

(client output) or
(server alert) or (gateway alert) or

(server output) or (gateway output)

1 1.0

11 NOT: MSGTYPE
Notice of a Smartphone Message

(server output) or (gateway output)

2 1.0

{CALLTYPE} CATEGORY STRUCTURE

The text line is comprised of field pairs, the first contains the field label and the second contains the field data. Fields are separated by a *
and the first field starts after a single *.
The category does not appear in the data.

XXX: ***DATE*<date>*TIME*<time>*LINE*<lineid>*NMBR*<number>*MESG*<hexchars>*FNMBR*<formatted

number>*NTYPE*<Number Type>*CTRY*<country>*LOCA*<location>*CARI*<carrier>*NAME*<name>*

The line is comprised of the following field pairs:

<label>*<data>* Description

DATE*date* where date is mmddyyyy or ddmmyyyy, m = month, d = day, y = year

TIME*time* where time is hhmm in 24-hour format, h = hour, m = minute

LINE*lineid* where lineid is the phone line identifier, NO-LINE or -

NMBR*number* where number is the caller's phone number, NO-NUMBER or -

MESG*chars* where chars is a string of hexadecimal characters, text or NONE

FNMBR*formatted
number*

where formatted number is the caller's formatted phone number or -

(new in API 1.11)

NTYPE*Number
Type*

where number type is the phone number's device type or -

(new in API 1.11)

CTRY*country*
where country is a phone number's two-letter uppercase country code or ZZ for unknown country

(new in API 1.11)

LOCA*location*
where location is the phone number's area within the country or -

(new in API 1.11)

CARI*carrier*
where carrier is the phone number's carrier name or -

(new in API 1.11)

NAME*name*
where name is the caller's name, a name from the smartphone address book (use "UNKNOWN" if not in
the address book), NO NAME or -

{ENDTYPE} CATEGORY STRUCTURE

The text line is comprised of field pairs, the first contains the field label and the second contains the field data. Fields are separated by a *
and the first field starts after a single *.
The category does not appear in the data.

END: *HTYPE*<ec>*DATE*<date>*TIME*<time>*SCALL*<dt>*ECALL*<dt>*CTYPE*<io>*LINE*<lineid>*NMBR*

<number>*FNMBR*<formatted number>*NTYPE*<Number Type>*CTRY*<country>*LOCA*<location>*CARI*

<carrier>*NAME*<name>*

The END: line has the following field pairs (field label and field data):

<label>*<data>* Description

HTYPE*ec* where ec = BYE or CANCEL

DATE*date* where date is mmddyyyy or ddmmyyyy, m = month, d = day, y = year

TIME*time* where time is hhmm in 24-hour format, h = hour, m = minute

SCALL*date time*
where start of call date is mm/dd/yyyy, a space and time is hh:mm:ss in 24-hour format, m = month, d
= day, y = year, h = hour, m = minute, s=second

ECALL*date time*
where end of call date is mm/dd/yyyy, a space and time is hh:mm:ss in 24-hour format, m = month, d
= day, y = year, h = hour, m = minute, s=second

CTYPE*io* where io is either IN or OUT (this is not a pass through of the CALL: CALLtype)

LINE*lineid* where lineid is the phone line identifier, NO-LINE or -

NMBR*number* where number is the caller's phone number, NO-NUMBER or -

FNMBR*formatted
number*

where formatted number is the caller's formatted phone number or -

(new in API 1.11)

NTYPE*Number
Type*

where number type is the phone number's device type or -

(new in API 1.11)

CTRY*country*
where country is a phone number's two-letter uppercase country code or ZZ for unknown country

(new in API 1.11)

LOCA*location*
where location is the phone number's area within the country or -

(new in API 1.11)

CARI*carrier*
where carrier is the phone number's carrier name or -

(new in API 1.11)

NAME*name* where name is the caller's name, NO NAME or -

{MSGTYPE} CATEGORY STRUCTURE

{MSGTYPE} allow for free-form text following the line type.

Alerts have no field pairs. The Server and Client/Gateway lines do have
field pairs and the difference is that the first field after the free-form
text begins with *** (sent from server) or ### (sent to server) respectively.

Server/Gateway Alerts

MSG: <message>

Alerts have a MSG: line type followed by free-form text; they have no field pairs.

Server Output Lines

XXX: <message> ***DATE*<mmddyyyy>*TIME*<hhmm>*LINE*<id>*NMBR*<nmbr>*MTYPE*IN|OUT|SYS|USER*FNMBR*

<formatted number*NTYPE*FIX/CELL*CTRY*<cc>*LOCA*<location>*CARI*<carrier>*NAME*<name>*

The line is comprised of the following field pairs:

<label>*<data>* Description

*** start of the information part of the message being sent from the server

DATE*date* where date is mmddyyyy or ddmmyyyy, m = month, d = day, y = year

TIME*time* where time is hhmm in 24-hour format, h = hour, m = minute

LINE*lineid* where lineid is the phone line identifier, NO-LINE or -

NMBR*number* where number is the caller's phone number, NO-NUMBER or -

MTYPE*io* where io is either IN, OUT, SYS or USER

FNMBR*formatted
number*

where formatted number is the caller's formatted phone number or -

NTYPE*Number Type*
where number type is the phone number's device type or -

(new in API 1.11)

CTRY*country*
where country is a phone number's two-letter uppercase country code or ZZ for unknown
country

(new in API 1.11)

LOCA*location*
where location is the phone number's area within the country or -

(new in API 1.11)

CARI*carrier*
where carrier is the phone number's carrier name or -

(new in API 1.11)

NAME*name* where name is the caller's name, NO NAME or -

Client/Gateway Output Lines

XXX: <message>###DATE*<date>*TIME*<time>*NAME*<name>*NMBR*<number>*LINE*<lineid>*MTYPE*<io>*

The line is comprised of the following field pairs:

<label>*<data>* Description

start of the information part of the message being sent to the server

DATE*date* where date is mmddyyyy or ddmmyyyy, m = month, d = day, y = year

TIME*time* where time is hhmm in 24-hour format, h = hour, m = minute

LINE*lineid* where lineid is the phone line identifier, NO-LINE or -

NMBR*number* where number is the caller's phone number, NO-NUMBER or -

MTYPE*io* where io is either IN, OUT, SYS, USER, NONE or -

NAME*name* where name is the caller's name, NO NAME or -

Feature Set 1: Modem and Device Support

SERVER IMPLEMENTATION

If you want to implement a server to communicate with NCID clients
and gateways:

listen to port 3333 for a connection or whatever port is specified
by ncidd.conf::port/landline

send a 200 text message to identify the server and version

send a 210 text message to identify the API version and supported feature sets

(New in API 1.5) immediately after sending a 210 line,
receive and process zero or more HELLO: lines

check server ncidd.conf::send cidlog to determine whether to send the call log

if not configured to send it, or the size exceeds ncidd.conf::cidlogmax, send a 251 Call log not sent message

if configured to send it but it is empty, send a 252 Call log empty message

if configured to send it but the file does not exist, send a
253 No Call log message

if configured to send it and it is not empty, send a
254 Start of call log message

if configured to send it and it is not empty, send the call log and end with a 250 End of call log
message

optionally, send a list of server-supported Client Job options to client, one OPT: <option> line for each option

if a server setting is being temporarily overridden by a HELLO: CMD: <command> line,
clear the override so it will not apply to future
connections

send a 300 End of server startup message

putting all of the above together, a typical client connection
start-up looks like this:

 200 Server: ncidd (NCID) x.x

 210 API: x.x Feature Set x x x x ...

 Client Sent: HELLO: IDENT: client ncid (NCID) x.x

 Client Ident: client ncid (NCID) x.x

 CIDLOG: *DATE*12012015*TIME*0028*LINE*POTS*NMBR*...

 HUPLOG: *DATE*12012015*TIME*0105*LINE*POTS*NMBR*...

 ...

 254 Start of call log

 250 End of call log

 OPT: hangup-1

 OPT: ...

 300 End of connection startup

when a call is received:

if configured by ncidd.conf::send cidinfo to send ring info, send a CIDINFO: line at each ring with a LINE indicator (default '-')
and the ring count

generate an alias for the name, number and/or line if it is in the alias file

(New in API 1.11) format the telephone number oountry specific

if optional Internal Hangup support (ncidd.conf::hangup) is implemented:

hangup a call if it is in the ncidd.alias file
but not in the ncidd.whitelist file

hangup a call using a modem:

modem off-hook
send HUP: line to connected clients

delay
modem on-hook

if optional Hangup Extensions support (ncidd.conf::hupmode) is implemented:

hangup a call if the Hangup Extension script determines it should be terminated

hangup a call using a modem:

modem off-hook
send HUP: line to connected clients

delay
modem on-hook

otherwise, if the call is not being terminated, send a CID: line to connected clients when a call
is received

send a CIDINFO: line after ringing stops,
with a ring count of 0

send a CIDINFO: when automatic hangup is completed,
with a ring count of -4.

send a MSG: line to connected clients with
an important server warning or a user message

maintain a constant TCP connection with the clients

allow clients to send a \n (newline) to
determine if the server is still available but ignore it (no
response is sent back to the client)

detect clients as they come and go

(New in API 1.6) allow clients to send an optional
GOODBYE (note that there is no trailing colon) line to close the connection to
the server

Server Output Lines

When the server sends information to a client or gateway, it sends the
data as lines of text that start with a line label. This defines line
types.
The current line labels are:

200

The server version message. The wording stays the same, but the version number changes each time the server is updated.

For example, if the server was version 1.0:

200 Server: ncidd (NCID) 1.0

210

The server API version and feature sets. This is to inform clients and gateways what features are implemented. All supported feature sets
must be included.

For example, if the API version is 1.0 then four feature sets are
supported:

210 API: 1.0 Feature Set 1 2 3 4

250 - 254

A call log message sent at server startup (in API 1.13 these can end in a timestamp showing tha last change of the call log):

250 End of call log 1670894717

251 Call log not sent 1670894717

252 Call log empty 1670894717

253 No Call log

254 Start of call log 1670894717

300

End of the connection startup message:

300 End of connection startup

CID:

An incoming Caller ID text line. It is sent to the clients and saved
in the call log when a call is received.

It has the {CALLTYPE} Category Structure.

CIDINFO:

A text line that indicates the telephone LINE identifier and ring
information. The text line is comprised of field pairs, the first
contains the
field label and the second contains the field data. Fields
are separated by a * and the first field starts after a *. The ring
information is

only obtained from modems that indicate each ring or
gateways that use ring to indicate the type of call termination. Note that
"termination" for CIDINFO: lines does not
refer to automatic Internal Hangups or Hangup Extensions. Instead, it refers to a person on
the phone who triggers the hangup manually, or the
telco that ends a call that has not been answered after a certain number
of rings.

CIDINFO: *LINE*<lineid>*RING*<count>*TIME*<time>*

The CIDINFO: line has the following fields:

<label>*<data>* Description

LINE*lineid* where lineid is the phone line identifier, NO-LINE or -

RING*count*

where count is 0, -1, -2, -3, -4 or a positive value

incremented at each ring

 0 = (modem) ringing has stopped

-1 = (gateway) call terminated without pickup

-2 = (gateway) call terminated after pickup

-3 = (gateway) BUSY signal for incomplete call
-4 = (modem) automatic hangup completed

TIME*time*
where time is hh:mm:ss in 24-hour format,

h = hour, m = minute, s=second

Ring indication example sent to the clients for ring count 4 and line 1:

CIDINFO: *LINE*1*RING*4*TIME*16:20:05*

Example of a POTS line label and the end of ringing indicator:

CIDINFO: *LINE*POTS*RING*0*TIME*16:20:05*

A SIP gateway example indicating termination without pickup and a VOIP line label:

CIDINFO: *LINE*VOIP*RING*-1*TIME*16:20:05*

A SIP gateway example indicating termination after pickup and a VOIP line label:

CIDINFO: *LINE*VOIP*RING*-2*TIME*16:20:05*

HUP:

If Internal Hangup support (ncidd.conf::hangup) or Hangup Extensions support (ncidd.conf::hupmode) is implemented, then when a
call is automatically terminated, a HUP: (Hung Up Phone) line is created by replacing the CID: label with the HUP: label.

It has the {CALLTYPE} Category Structure.

LOG:

When the server sends the call log, it adds the LOG: tag to every line that does not contain a recognized line label. The following is an
example of a comment line
that may be in the file:

LOG: # Aug 1 00:30:01 localhost newsyslog[35020]: logfile turned over

MSG: (server alerts)

A text line containing a server alert that is sent to the clients and saved in the call log. It has free-form text only and no
field pairs.

It has the {MSGTYPE} Category Structure for Server/Gateway Alerts.

Example:

MSG: Caller ID Logfile too big: (95000 > 90000) bytes

MSG: (server output)

A text line containing a server message that is sent to the clients and saved in the call log.

It has the {MSGTYPE} Category Structure for Server Output Lines.

OPT: <hangup-X|hupmode-X|ignore1|regex-X>
OPT: LineIDs: <lineid> [<lineid>] (new in API 1.6)

OPT: country: <country code> (new in API 1.11)

A server option sent to all the clients. Multiple OPT: lines are permitted and the lines do not
need to be sent in any particular order.
Unless otherwise indicated, options
are always in lowercase.

OPT: hangup-X

Informational only, corresponds to the value of ncidd.conf::hangup
where "X" is in the range 1-3. This line is not sent if
ncidd.conf::hangup has the value zero.

OPT: hupmode-X

Informational only, corresponds to the value of ncidd.conf::hupmode
where "X" is in the range 1-3. This line is not sent if
ncidd.conf::hupmode has the value zero.

OPT: ignore1

Informational only, corresponds to the value of ncidd.conf::ignore1.
This line is not sent if ncidd.conf::ignore1 has the value zero.

OPT: regex-X

Informational only, corresponds to the value of ncidd.conf::regex
where "X" is in the range 0-2.

OPT: LineIDs: <lineid> <lineid>

When ncidd.conf::cidinput indicates that an "AT" modem is connected,
OPT: LineIDs: becomes a list of each ncidd.conf::lineid, up
to a maximum
of four, after applying LINE alias(es). This is a space-delimited list and if any ncidd.conf::lineid contains embedded

spaces, enclose it in quotes.

Example:

OPT: LineIDs: "POTS" "WORK 1" "VOIP" "WORK 2"

OPT: LineIDs: is not sent if ncidd.conf::cidinput indicates no "AT" modem is attached.

When there is more than one lineid, clients must allow the user to select from this list when implementing Feature Set 3 REQ: DIAL.

Multiple modems are supported, OPT: LineIDs: will contain one or more lineids,
each one in quotes.

OPT: country: <country code>

Required, indicates the two-letter uppercase country code. The default country code is US unless ncidd.conf::country is set.

(New in API 1.3) Unless otherwise noted, all OPT: lines output by the server are for informational and troubleshooting purposes only.
Clients can optionally make use of them by giving the user a way to display them. Otherwise, clients are not required to display them, do

not need to take any action on them and can safely ignore them.
See Feature Set 1: Client Implementation for more information.

Server Alias Support

The name, number and telephone line of a call are checked for an alias. If a match is found it will be replaced by its alias before the call is
added to the call log and before the call information is sent to the clients.

NCID's support for aliases is extensive and there is an entire section in the User Manual devoted to the subject (see the chapter "Using
NCID"). Continue reading below for:

only API-specific topics

a summary of all alias types

a summary of alias-related configuration options in ncidd.conf

Alias support is required in Feature Set 1.

Clients implementing Feature Set 3: Client Job Support, can also
be used to maintain aliases. Such clients will also provide a way
to force the
server to reload its alias table.

Alias Types

There are six types of aliases. The text in the Code column below is used internally by NCID to distinguish the types and you'll see it used
throughout this document.

Type Code

number NMBRONLY

name NAMEONLY

number & name NMBRNAME

number if name NMBRDEP

name if number NAMEDEP

lineid LINEONLY

Alphabetical list of related configuration options:

ncidd.conf::cidalias
ncidd.conf::ignore1
ncidd.conf::lineid
ncidd.conf::regex

Server Hangup Support

At a high-level, there are two sets of procedures available to automatically hangup calls. Both are optional and one or both can be enabled
at the same time. They are:

Internal Hangups. This is built in to the NCID server and uses the
ncidd.blacklist:: and ncidd.whitelist:: files.

Hangup Extensions. This lets you use an external script or program.

Internal Hangups are described below.
Hangup Extensions are optional.

When Caller ID is received from a modem and if the caller name or number is in the blacklist file but not the whitelist file, hangup is
automatic.

NCID's support for automatic hangups is extensive and there is an entire section in the User Manual devoted to the subject (see the chapter
"Using NCID"). Continue reading below for:

only API-specific topics

details of the AT commands sent for all hangup types

a summary of Internal Hangup-related configuration options in ncidd.conf

Internal Hangup support is optional in Feature Set 1.

Clients implementing Feature Set 3: Client Job Support, can also
be used to maintain the blacklist and whitelist. Such clients will
also provide
a way to force the server to reload these tables.

When the server hangs up the line, it sends a HUP: line to the clients and call log. The
HUP: line has the same layout as the
CID: line
generated from the call, but with CID: replaced by HUP:.

Internal Hangup Types

If enabled by ncidd.conf::hangup, there are three types of hangups:

Normal (required)

When the server receives the Caller ID and if the name or number is
in the blacklist file but not the whitelist file, the modem does a
pickup, delays for one second and then does a hangup.

Action Send this AT command

PICKUP the line ATH1

delay 1 second

HANGUP ATH0

FAX (optional)

When the server receives the Caller ID and if the name or number is
in the blacklist file but not the whitelist file, the modem sets
FAX
mode, does a FAX answer, generates a FAX tone, delays for 10
seconds, hangs up and resets to data mode.

Action Send this AT command Expected modem response

Set FAX Mode AT+FCLASS=1 OK

PICKUP the line| ATH1 | OK
FAX Answer | ATA |
delay 10 seconds | |
HANGUP | ATH0 | OK
Set DATA Mode | AT+FCLASS=0 |

* NOTE: PICKUP is a configuration option. Older modems may fail to generate a FAX tone if there is a PICKUP.

Announce (optional)

When the server receives the Caller ID and if the name or number is
in the blacklist file but not the whitelist file, the modem sets
VOICE mode, answers the call, plays a recording, hangs up and
resets to data mode.

Action Send this AT command Expected modem response

Set VOICE Mode AT+FCLASS=8 OK

Set speaker volume to normal AT+VGT=128 OK

Select compression method | AT+VSM=130 | OK
Answer call | AT+VLS=1 | OK
Set echo off | ATE0 | OK
Select VOICE TRANSFER Mode
| AT+VTX | CONNECT
Send recording to modem | |
Send end of recording | <DLE><ETX> | OK
Set echo on | ATE1 | OK
HANGUP |

ATH0 | OK
Set DATA Mode | AT+FCLASS=0 |

* NOTE: AT+VSM=130 is the default compression method used for the Conexant CX93001 chipset used in a lot of modems.

Alphabetical list of related server configuration options:

ncidd.conf::announce
ncidd.conf::audiofmt
ncidd.conf::blacklist
ncidd.conf::cidinput
ncidd.conf::hangup
ncidd.conf::ignore1
ncidd.conf::initcid
ncidd.conf::initstr
ncidd.conf::lockfile
ncidd.conf::pickup
ncidd.conf::regex

ncidd.conf::ttyclocal
ncidd.conf::ttyport

ncidd.conf::ttyspeed
ncidd.conf::whitelist

Modem-to-Server

In the US, telcos transmit the Caller ID between the first and
second rings. Telcos in other countries may transmit it before the first ring.
Nothing needs to be configured in NCID to accommodate this difference,
however, it is important that modems be configured for the
correct country code. The default is normally set based on where it is
purchased. If not, the user will need to do a one-time, manual

configuration of the country code, usually using the AT+GCI command.

ASCII Plain Format Caller ID

This is a human-readable version of detected Caller ID. It is controlled by setting ncidd.conf::initcid. Typical values are "AT+VCID=1" or
"AT#CID=1". Formatted Caller ID is the NCID default.

An example of a modem's Caller ID output is shown below. The order of the lines is unimportant and some of the lines may not be
present. For example, the MESG line is normally not emitted by modems.

There may or may not be a space before the '='.

The NMBR label may be DDN_NMBR (Dialable Directory Number) instead,
depending on the country.

RING

MESG = 110101

DATE = 0511

TIME = 1852

NMBR = 4075550000 or DDN_NMBR = 4075550000

NAME = JOHN DOE

RING

ASCII Hex Format Caller ID (SDMF, MDMF a.k.a. XDMF) (new in API 1.7)

This is an "ASCII Hex" version of detected Caller ID. It is controlled
by setting ncidd.conf::initcid. Typical values are "AT+VCID=2" or
"AT#CID=2". This is the actual data stream supplied by telcos. Not all modems support enabling unformatted output.

The XDMF format for Caller ID from modems is a long line in hexadecimal characters as
ASCII text. XDMF is either MDMF or SDMF.

It is important to note that only modems configured for XDMF Caller ID send the output as ASCII text.

As long as the modem has been initialized with the appropriate ncidd.conf::initcid string, the NCID server automatically detects
Formatted and Unformatted Caller ID data streams.

SDMF (Single Data Message Format) allows telcos to supply the date, time and Caller ID phone number only. If the phone number is
unavailable, a single letter in place of the phone number will indicate the reason: A = anonymous, O = out of area, P = private.

Here is the SDMF equivalent of the above Formatted Caller ID:

RING

041230353131313835323430373535353030303059

RING

The hexadecimal string is parsed as follows:

0412 3035313131383532 34303735353530303030 59

Type Len ASCII Hex DATA

 04h 12h SDMF Call

 DateTime 3035 3131 3138 3532 '05111852'
 Number 3430 3735 3535 3030 3030 '4075550000'

 59h Checksum

The data consists of:

a one-byte (two hexadecimal characters) parameter type
('04' means SDMF in this example)
a one-byte (two hexadecimal characters) parameter length ('12' in hex, 18 in decimal) excluding the checksum byte

zero or more bytes of parameter data (date, time, phone number).
a one-byte (two hexadecimal characters) checksum value calculated as the two's complement of the modulo 256 sum of all

preceding bytes.

MDMF (Multiple Data Message Format) is an enhanced version of SDMF that adds the Caller ID name and can also include the data for
other telco services (e.g. voicemail message waiting). Most telcos now use MDMF.

Whereas SDMF consists of a single parameter "block" followed by a checksum, MDMF consists of multiple parameter blocks followed by a
checksum.

Here is the MDMF equivalent of the above Formatted Caller ID:

RING

802001083035313131383532020A3430373535353030303007084A4F484E20444F4584

RING

The hexadecimal string is parsed as follows:

8020 01083035313131383532 020A34303735353530303030

07084A4F484E20444F45 84

Type Len ASCII Hex DATA

 80h 20h MDMF Call

 01h 08h DateTime 3035 3131 3138 3532 '05111852'

 02h 0Ah Number 3430 3735 3535 3030 3030 '4075550000'
 07h 08h Name 4A4F 484E 2044 4F45 'JOHN DOE'

 84h Checksum

Here, '80' indicates MDMF, '20' is 32 in decimal for the number of bytes to follow excluding the checksum byte.

For a good overview of SDMF and MDMF, see: https://melabs.com/resources/callerid.htm

Note that not all of the checksums shown on the above page are correct and the site's owner has been notified.

Optional Server Extensions

A Server Extension is an optional external script or program that is called by ncidd to perform a function and return a result. Server
Extensions are a way for users to add functionality to NCID without requiring changes to NCID itself, especially when the functionality is

atypical and would not have a broad appeal to other NCID users.

Server Extensions are isolated from the main NCID distribution and because of this they do not normally require any changes when NCID is
upgraded to a later version.

One of the design philosophies that has always existed with NCID is to
accept incoming Caller ID as quickly as possible and to send it to all
connected clients as quickly as possible. With a Server Extension, there
is a risk that executing one can impact performance. For this reason,

users are cautioned to create Server Extensions that are optimized for fast execution.

The overall theory of operation is that ncidd will pass call info to
the Server Extension, it will do whatever processing is desired and
return
back to ncidd some sort of result.

In order for ncidd to use Server Extensions, there is a minimal amount
of configuration information required in ncidd.conf. Typically this
consists of a setting to enable/disable the Server Extension and a
setting to tell ncidd the Server Extension name. Server Extensions
may have

specific options that also need to be in ncidd.conf.

Beyond the minimal info needed to make ncidd aware of the Server Extension,
there is no reason that a Server Extension could not have its
own configuration file.

You can use any scripting or programming language desired, however, if it is a scripting language and not a compiled binary, the first line
must use the normal Unix convention of a "#!" path to the interpreter.

Examples:

#!/bin/bash

#!/usr/bin/perl

Currently the only Server Extension supported is the Optional Server Hangup
Extension.

Optional Server Hangup Extension

You might want to implement a Hangup Extension if you want additional
or alternative call termination checking beyond the basic
Internal Hangup that's implemented with the ncidd.blacklist and ncidd.whitelist
files. All ncidd.conf::hangup modes (normal, fax,

announce) are supported.

One advantage that Hangup Extensions have over the basic Internal Hangup
is the ability to associate a different ncidd.conf::announce
file for every Caller ID number or name.

The Hangup Extensions script determines what calls to hang up on. It does not use
ncidd.blacklist but does use ncidd.whitelist. If the
call is in
ncidd.whitelist or if the basic Internal Hangup is enabled and has hung up on the call,
the hangup script is not executed.

Alphabetical list of related server configuration options:

ncidd.conf::hupmode
ncidd.conf::hupname
ncidd.conf::huprmd

The ncidd.conf::hupname file must begin with hangup- .

ncidd passes one string of call info as a single command line argument. It passes it at the point just prior to changing the line type from
CID: to HUP:. ncidd
must wait for the Hangup Extension response data before continuing.

The string of call info has the following format and is subject to
the rules described in About line types and field pairs.

DATE<date>*TIME*<time>*LINE*<lineid>*NMBR*<number>*NAME*<name>*MODE*<hupmode>*

It has the following fields:

<label>*<data>* Description

DATE*date* where date is mmddyyyy or ddmmyyyy, m = month, d = day, y = year

TIME*time* where time is hhmm in 24-hour format, h = hour, m = minute

https://melabs.com/resources/callerid.htm

LINE*lineid* where lineid is the phone line identifier, NO-LINE or -

NMBR*number* where number is the caller's phone number, NO-NUMBER or -

NAME*name* where name is the caller's name, NO NAME or -

MODE*hupmode* where hupmode is in the range of 1 to 3

Data to be passed back from the Hangup Extension to ncidd must be sent to STDOUT.

Format 1:

One of these optional lines, depending on the value of hupmode:

Using HUPMODE 1 - Normal Hangup

Using HUPMODE 2 - FAX Hangup

Using HUPMODE 3 - VOICE Hangup

HangupReason:<your optional custom hangup reason>

hangup|OK

Format 2, when ncidd.conf::hupmode = 3 you can specify an optional voice file:

One of these optional lines, depending on the value of hupmode:

Using HUPMODE 1 - Normal Hangup

Using HUPMODE 2 - FAX Hangup

Using HUPMODE 3 - VOICE Hangup

Recording:<file name or full path>

HangupReason:<your optional custom hangup reason>

hangup|OK

Format 3, when ncidd.conf::hupmode != 3 and hupmode 3 is required:

One of these optional lines, depending on the value of hupmode:

Using HUPMODE 1 - Normal Hangup

Using HUPMODE 2 - FAX Hangup

Using HUPMODE 3 - VOICE Hangup

Voice hangup is required

abort

(New in API 1.6) You can specify an optional reason that the Hangup Extension
is terminating the call by sending the HangupReason:
line. When the
ncidd server detects this line, it will append <your optional custom
hangup reason> to the NAME appearing in the HUP:

line. The HangupReason: line must be sent prior to the hangup line.

The Recording: line must be sent prior to the hangup line. If it
is not present, it will default to the voice file in ncidd.conf::huprmd.
If ncidd.conf::huprmd is not defined, the ncidd.conf::announce voice file will be
used.

All data sent to STDOUT by the Hangup Extension will be saved to ncidd.log.

If and only if hangup is passed back to ncidd will the call be immediately
terminated. Passing back OK is not required (no response
at all is also acceptable) but it is suggested because you'll be able to see it in ncidd.log.

Optional NetCallerID Device-to-Server

The NetCallerID serial device outputs the Caller ID on a single line with the following format:

###DATE<datetime>...NMBR<number>...NAME<words>+++\r

The NetCallerID line has the following fields:

<label><data> Description

start of the information part of the message being sent to the server

DATEdatetime where datetime is mmddhhmm or ddmmhhmm, m = month, d = day, h = hour, m = minute

... field separator

NMBRnumber where number is the phone number

... field separator

NAMEwords where words is a name or -UNKNOWN CALLER- or -MSG OFF- or similar

+++ end of the information part of the message

Examples:

###DATE03301423...NMBR4075551212...NAMEWIRELESS CALL+++\r

###DATE03301423...NMBR...NAME-UNKNOWN CALLER-+++\r

###DATE03301423...NMBR...NAME+++\r

###DATE...NMBR...NAME-MSG OFF-+++\r

Optional TCI Device-to-Server (new in API 1.1)

Serial TCI devices output a single line using the Telephone Collectors International output standard.

To make sure the text line is from a TCI device, the server tests to make sure all of the following are true:

line length > 30 characters

position 0 is a digit

position 9 is a '/'

position 24 is an 'M'

The TCI line has the following fields:

Positions Length Description

0-1 2 LINE

7-11 5 DATE

17-24 8 TIME

29-43 15 NUMBER

55-69 15 NAME

Example:

01 9/03 2:25 PM 806-672-1767 WIRELESS CALLER

0123456789012345678901234567890123456789012345678901234567890123456789

 1 2 3 4 5 6

NOTE:

All fields except NAME are right justified. Five spaces separate each field,
except NUMBER and NAME fields which are separated by 11
spaces.

CLIENT IMPLEMENTATION

connect to port 3333 or whatever port is specified in server
configuration

receive a 200 server version text message

receive a 210 server API version text message

(New in API 1.5) send zero or more HELLO: lines

if no call log is sent by the server, receive a 251 Call log not sent or a 252 Call log empty or a 253 No Call log message

if a call log is sent by the server, it:

may contain CIDLOG: text lines to be parsed and displayed

may contain HUPLOG: text lines to be parsed and displayed

may contain LOG: text lines which must be ignored

may contain MSGLOG: text lines to be parsed and displayed

will end with a 250 End of call log message

receive zero or more OPT: <option> lines.

NEW IN API 1.3

Unless otherwise noted, all OPT: lines output by the server are for informational and troubleshooting purposes only. Clients can
optionally make use of them by giving the user a
way to display them. Otherwise, clients are not required to display them, do not

need to take any action on them and can safely ignore them.
See also Feature Set 1 OPT: definition for more information.

If a client wants to optionally display the OPT: lines then it will need to do the following:

Retrieve all OPT: lines during the initial connection to the server.

Have a way for users to easily view the OPT: lines.
They can be displayed however is convenient for the programming
language the client is written in. Displaying the leading OPT:
text is optional, but the text following OPT:
must be shown.

Handle OPT: hangup (i.e., with no dash-value) in order to accommodate servers that are not yet compliant with API 1.3.

Handle OPT: regex (i.e., with no dash-value) in order to accommodate servers that are not yet compliant with API 1.7.

Show "none" if no OPT: lines were received.

It is suggested, but not required:

That the lines be shown in a vertical list.

That user-friendly text be shown to allow easy interpretation of the setting.

That the lines be shown in a Help Menu.

Examples below show OPT: hangup for a
pre-API 1.3 server and OPT: hangup-3, even though they won't both be generated by the
same server. Similarly
for a pre-API 1.7 server, OPT: regex and
OPT: regex-2 won't both be present.

Minimum suggested examples:

 Server-enabled options:

 OPT: hangup

 OPT: hangup-3

 OPT: hupmode-2

 OPT: ignore1

 OPT: regex

 OPT: regex-2

 OPT: LineIDS: "LandLine" "VoIP"

or

 Server-enabled options:

 hangup

 hangup-3

 hupmode-2

 ignore1

 regex

 regex-2

 LineIDS: :LandLine" "VoIP"

or

 Server-enabled options:

 none

Ideal suggested examples showing all options:

Server-enabled option Description

none

hangup|hangup-1 Internal Hangup Mode 1: Terminate Blacklisted Call

hangup-2 Internal Hangup Mode 2: Generate FAX Tone and Terminate Blacklisted Call

hangup-3 Internal Hangup Mode 3: Play Announcement and Terminate Blacklisted Call

hupmode-1 Hangup Extension Mode 1: Terminate Blacklisted Call

hupmode-2 Hangup Extension Mode 2: Generate FAX Tone and Terminate Blacklisted Call

hupmode-3 Hangup Extension Mode 3: Play Announcement and Terminate Blacklisted Call

ignore1 Server Ignores Leading 1 for Calls/Aliases

regex|regex-1 Use POSIX Extended Regular Expressions for Server List Matching

regex-2 Use Perl Regular Expressions for Server List Matching

LineIDS: "LandLine" "VoIP" Available lines for dialing numbers

(anything else) Unknown/invalid

receive a 300 End of server startup message

possibly receive a CIDINFO: line at each ring or just at the end of the call

possibly receive a CID: line whenever a call is received

possibly receive an HUP: line whenever a call is automatically terminated

clients are allowed to send a text message to the server using a
MSG: line

clients are allowed to connect and disconnect as they please

(New in API 1.6) possibly send an optional GOODBYE
(note that there is no trailing colon) line to the server to close the
connection

possibly send a \n (newline) to the server
to determine if the server is still available.

(New in API 1.4) clients must always ignore line types that begin
with "+" (e.g., +CID:, +CIDINFO:) because these represent call
activity from a Forwarding Gateway (Server-to-Server)
that are processed only by the NCID server

Client-to-Server

\n (newline)

Clients are allowed to send a \n (newline) to the server to determine if the server is still available. It should be sent only after at least 15
minutes of no server activity. There is no server response, however, the server will log this action
as "Client xxx sent empty line." It is up to

the client to check to
see if sending a \n (newline) results in
an error and take appropriate action (e.g., try to reconnect to the
server).

If a client needs a more robust way of making sure the server is
still available by requiring a server response,
implement Feature Set 4:
Acknowledgment Support.

(New in API 1.6) GOODBYE
(note that there is no trailing colon)

This optional line type allows the client to force a graceful disconnect
from the server, rather than relying on the server to
disconnect due
to a connection timeout or error. This is an experimental feature to
allow a simple register/unregister of clients

using alternative connection protocols (e.g., a RESTful interface).

HELLO: IDENT: <ident>

HELLO: CMD: <command>

<ident> is any freeform text, upper and/or lowercase and any number of words separated by spaces. It is used
to identify the
client.

Only one <ident> line is expected but this is not strictly enforced.

The recommended client <ident> contents are:

<client> <program name> <version number>

or

(New in API 1.6)

<client> <[hostname/]program name> <version number> [OUT]

A server has the option of logging or displaying the <ident> string as clients
connect and disconnect.

New in API 1.6

hostname is optional, but if present it should end with a trailing slash and be followed immediately by the program name.

The presence of the special uppercase text [OUT] following the version
in the <ident> string is used
in Feature Set 2:
Gateway Support
and Feature Set 3: Client Job Support to tell the server that the client or gateway will be generating OUT:

lines. For more information, go to REQ: DIAL.

<command> controls a server setting or action. There can only be one <command> per line
and unless otherwise indicated,
commands are always in lowercase.

Multiple lines are permitted. The order of IDENT: <ident> and CMD: <command> lines does not matter.

HELLO: line types are sent only when
a connection is first established. The server delays on connect after sending a 210 line in
order give a client the opportunity to send the optional HELLO: lines. To clarify, HELLO: line types must be sent by the client

immediately after receiving a 210 line.

Any HELLO: line type received after the server
starts sending the call log is handled as an unknown line type.

An example client connection start-up looks like this:

 200 Server: ncidd (NCID) x.x

 210 API: x.x Feature Set x x x x ...

 HELLO: IDENT: client ncid x.x.x

 HELLO: CMD: no_log

 HELLO: ...

 251 Call log not sent: /var/log/cidcall.log

 OPT: hangup-1

 OPT: ...

 300 End of connection startup

Unlike most other line types, HELLO: line types must NOT be sent to clients.

At present, there are two commands:

 HELLO: CMD: no_log

 HELLO: CMD: send_log

The purpose of the no_log command is to temporarily override the server's
ncidd.conf::send cidlog setting. By doing so, the client
or gateway can finish connecting much quicker because no call log will be sent.
The override is maintained only for the currently

connecting client
or gateway and only for the duration of its connection startup.

(New in API 1.6) If ncidd.conf::send cidlog is enabled and HELLO: CMD: no_log
is sent to the server, instead of sending the log, the
server must respond with
251 Call log not sent. The connection startup
continues normally, ending with 300 End of connection

startup.
It is critical that the server clears this temporary override so that
it is not carried over to future connections.

(New in API 1.6) If ncidd.conf::send cidlog is not enabled and HELLO: CMD: send_log
is sent to the server, the server must try to send
the log and respond with either
250 End of call log, 252 Call log empty,
or 253 No Call log. The connection startup
continues

normally, ending with 300 End of connection startup.
It is critical that the server clears this temporary override so that
it is not
carried over to future connections.

The no_log command has no effect on the Feature Set 3 REQ: REREAD Client Job that causes the call log to be resent.

(New in API 1.6) The send_log command has no effect on REQ: REREAD either.

MSG: (client output)

A text line containing a user-generated message that is sent to the server, saved in the call log and then forwarded to all listening clients.

It has the {MSGTYPE} Category Structure for Client/Gateway Output Lines.

Example:

MSG: This is a user message ###DATE ...

Optional Client-to-Module

When the client is configured to use an output module, it splits the single server call line into thirteen lines for passing via standard input to
the output module.

<DATE>\n<TIME>\n<NMBR>\n<NAME>\n<LINE>\n<TYPE>\n<MTYPE>\n<MESG>\n<FNMBR>\n<NTYPE>\n<CTRY>\n<LOCA>\n<CARI>\n

Click on a link to be taken to its definition.

Line Field Description

1
<DATE> mm/dd/yyyy or
dd/mm/yyyy

date of either the call or message

where m = month, d = day, y = year

2
<TIME> hh:mm or
hh:mm am/pm

time of either the call or message

where h = hour, m = minute

3 <NMBR> phone number of either the call or message

4 <NAME> caller's name

5 <LINE> lineid of either the call or message

6 <TYPE> one of the {CALLTYPE} or {MSGTYPE} line types from the Categories table

7 <MESG> message, or blank for a call

8 <MTYPE>
If <TYPE> indicates a call then <MTYPE> will be null. Otherwise, <MTYPE> will be IN,
OUT, SYS, USER, NONE or -.

9 <FNMBR> formatted phone number (new in API 1.11)

10 <NTYPE> phone number's device type (new in API 1.11)

11 <CTRY>
phone number's two-letter uppercase country code

(new in API 1.11)

12 <LOCA>
phone number's location within the country

(new in API 1.11)

13 <CARI>
phone number's carrier name or -

(new in API 1.11)

Optional Client-to-TiVo Display (Removed in API 1.6)

If the TiVo (--tivo|-T) option is given on the command line when launching the ncid client, or the TivoFlag is set to 1 in ncid.conf, the output is
two lines. The first line contains the Caller ID name and number. The second line contains the type of call and a telephone lineid. If the lineid

is blank, then there is no second line:

PASADENA, CA (800)555-1212

PASADENA, CA (800)555-1212

CID POTS

Feature Set 2: Gateway Support

SERVER IMPLEMENTATION

If you want to implement a server to communicate with NCID clients and gateways:

implement a Feature Set 1 server

detect gateways as they come and go

if a gateway sends a line prefixed with CALL:, process it to generate a {CALLTYPE} line

if a gateway sends a line prefixed with CALLINFO:, process it to generate:

an END: line and

a CIDINFO: line with CANCEL if the ring count is -1, or

a CIDINFO: line with BYE if the ring count is -2, or

a CIDINFO: line with BUSY if the ring count is -3

if a gateway sends a {MSGTYPE} Client/Gateway Output Line, process it to generate a {MSGTYPE} Server Output Line
(normally this is
just replacing ### with ***)

(New in API 1.6) examine one or more HELLO: IDENT: <ident> lines
sent by clients and gateways to see if the <ident> string identifies
certain
client-specific or gateway-specific features that the server
needs to be aware of.

XDMF input

The XDMF gateway (xdmf2ncid) accepts either hex input from a modem or binary input from a device.

Devices such as the CTI Comet USB or the Holtek HT9032D based PSTN Caller ID module output XDMF
(MDMF or SDMF) Caller ID with the
same parameter structure as modems, but do so as binary data
and do not emit RING lines.

Set xdmf2ncid::ht9032 = 0 for input from a Comet or modem.

Set xdmf2ncid::ht9032 = 1 for input from a Holtek HT9032D module.

The data consists of:

a one-byte parameter type for MDMF or SDMF
a one-byte parameter length excluding the checksum byte

zero or more bytes of parameter data (date, time, phone number)
a one-byte checksum value calculated as the two's complement of the modulo 256 sum
of all preceding bytes.

Refer to ASCII Hex Format Caller ID (SDMF, MDMF a.k.a. XDMF) for:

ASCII Hex data from modems
Description of SDMF and an example of the format
Description of MDMF and an example of the format

An SDMF binary string, same as the example SDMF string in ASCII Hex:

 0412 05111852 4075550000 59

 Type Len DATA FORMATTED

 04h 12h SDMF Call

 DateTime 05111852 05/11 18:52

 Number 4075550000 407-555-0000

 59h Checksum

An MDMF binary string, same as the example MDMF string in ASCII Hex:

 8020 05111852 020A4075550000 07084A4F484E20444F45 84

 Type Len DATA FORMATTED

 80h 20h MDMF Call

 01h 08h DateTime 05111852 05/11 18:52

 02h 0Ah Number 4075550000 407-555-0000

 07h 08h Name 4A4F 484E 2044 4F45 JOHN DOE

 84h Checksum

Holtek HT9032D operation mode

The Holtek HT9032D based PSTN Caller ID module also outputs random data. In between this noise is
the actual XDMF data, preceded by
27 or 28 x 0x55 (U chars), with a final random character.

The following depicts the output from the Holtek HT9032D module:

<RANDOM DATA><27 or 28 U's><RANDOM CHARACTER><MDMF PACKET><RANDOM DATA>

The XDMF packet format: <XDMF start><length><data><checksum>

The XDMF packet length is used to strip the random data that follows the XDMF packet checksum.

For a good overview see: Testing LinkSprite Caller ID Module (based on HT9032) with a PC.

The logic for determining data and noise packets takes one or two reads.

Read1:

Must either contain 10 or more U's to indicate the start of a XDMF packet, or end in a U to
indicate the start of a possible XDMF

packet. If neither, read1 is random data and is ignored.

Read2:

Needed if read1 contains 10 or more U's but does not contain any XDMF packet, if read1
ends in a U or if read1 contains a

partial XDMF data packet.

If the number of U's between read1 and read2 is still less than 10, both read1 and read2 are
random characters and ignored. A log entry
indicates this.

Server Output Lines

BLK:

When a call is automatically blocked, a BLK: (Call Blocked) line is created. A blocked call is one where the CID device (e.g., Whozz Calling
Ethernet Link devices) does not pass an incoming call through to connected telephones. The calling party simply hears the line ringing.

Compare this with a terminated (HUP:) call where the calling party hears the line disconnect and may or may not hear the line ringing at
all.

It has the {CALLTYPE} Category Structure.

https://bigdanzblog.wordpress.com/2015/05/22/testing-linksprite-caller-id-module-based-on-ht9032-with-a-pc/

END:

An end-of-call text line. It is generated from the CALLINFO: text line from a gateway. It provides information that can be used for call
accounting.

It has the {ENDTYPE} Category Structure.

For call accounting purposes, it is intended that a client use the DATE, TIME, LINE, NMBR and CTYPE field pairs as a unique key identifier
for records in the call log.

MWI: (new in API 1.7)

A voicemail message waiting text line. It is sent to the clients and saved
in the call log when a Message Waiting Indicator is received.

It has the {CALLTYPE} Category Structure, however,
NAME and NMBR will have text. See the CALL:
definition in the Gateway-to-Server
section.

Example for US telcos:

MWI: *DATE*04172018*TIME*2005*LINE*HOME*NMBR*Voicemail*MESG*NONE*

NAME*Message(s) Waiting*

MWI: *DATE*04172018*TIME*2136*LINE*HOME*NMBR*Voicemail*MESG*NONE*

NAME*No Messages Waiting*

Example for UK telcos:

MWI: *DATE*04222018*TIME*1303*LINE*HOME*NMBR*Voicemail*MESG*NONE*

NAME*1 Message Waiting*

MWI: *DATE*04222018*TIME*1619*LINE*HOME*NMBR*Voicemail*MESG*NONE*

NAME*5 Messages Waiting*

MWI: *DATE*04232018*TIME*0839*LINE*HOME*NMBR*Voicemail*MESG*NONE*

NAME*No Messages Waiting*

NOT:

A notification text line of a smartphone message. It is sent to all clients and saved in the call log.

It has the {MSGTYPE} Category Structure for Server Output Lines.

Examples:

NOT: PHONE 4012: PING Test notification ***DATE ...

NOT: PHONE 7cd0: SMS from mail@nowhere.com ***DATE ...

OUT:

An outgoing call text line.

It has the {CALLTYPE} Category Structure.

PID:

A smartphone incoming Caller ID text line sent to NCID. It uses the PID: label instead of the CID: label because the ncid-page client
output module can be configured to send CID: and MSG: text lines to smartphones. This could cause the same message to be sent back

and forth in an infinite loop if CID: or MSG: were used.

It has the {CALLTYPE} Category Structure.

PUT: (new in API 1.7)

A smartphone outgoing Caller ID text line sent to NCID. It uses the PUT: label instead of the OUT: label.

It has the {CALLTYPE} Category Structure.

RID: (new in API 1.7)

A Ring Back Caller ID text line. Ring back is a service offered by
some telcos. On making a telephone call to a number that is engaged
(busy), automatic ring back is a service provided by the telco whereby, when the called number becomes available, the caller is rung

back, usually with a distinctive "ring back" ring.

It has the {CALLTYPE} Category Structure.

WID: (new in API 1.1)

A Call Waiting Caller ID text line.

It has the {CALLTYPE} Category Structure.

GATEWAY IMPLEMENTATION

connect to port 3333 or whatever port is specified in server
configuration

receive a 200 server version text message

receive a 210 server API version text message

(New in API 1.5) immediately after receiving a 210 line,
send zero or more HELLO: lines

if no call log sent, receive a 251 Call log not sent or a 252 Call log empty or a 253 No Call log message (ignore)

if call log sent, receive a 250 Call log sent message (ignore)

(New in API 1.5) if a server setting is being temporarily overridden by a HELLO: CMD: <command> line,
clear the override so it will
not apply to future connections.

receive zero or more OPT: <option> lines (ignore)

receive a 300 End of server startup message

connect to the Caller ID service (SIP, YAC, etc)

when incoming CID information is obtained from the service, send the data to the server in the CALL: text line format with IN in the
CALL<type> field

for all other {CALLTYPE}, send the data to
the server in the CALL: text line format with
the appropriate line type (e.g., WID)
in the
CALL<type> field

(note: "hangup" in the context below does not mean calls automatically terminated by Internal Hangup or Hangup Extensions; it refers to
hangups triggered by a phone user or the telco):

if hangup is detected before answer, send the data to the server in the
CALLINFO: CANCEL text line format

if hangup is detected after answer, send the data to the server in the
CALLINFO: BYE text line format

if the gateway receives a notice of a smartphone message, send the data to the server in the NOT: text line format with IN in the
MTYPE field

if the gateway sends a smartphone message, send the data to the server in the NOT: text line format with OUT in the MTYPE field
(optional)

Gateway-to-Server

When the gateway sends information to the server, it sends the data as
lines of text that start with a line label. This defines line types. The
current line labels are:

CALL:

A gateway Caller ID text line. It is sent to the server and converted into a CID: or other {CALLTYPE} text line when a call is received. The
text line is comprised of field pairs, one contains the field name and the following field contains the field data. Fields are separated by ...,

the first field starts after ### and the last field ends in +++:

CALL: ###DATE<datetime>...CALL<type>...LINE<lineid>...NMBR<number>... NAME<name>+++

The CALL: line has the following field pairs (field label and field data):

<label><data> Description

start of the information part of the message being sent to the server

DATEdatetime where datetime is mmddhhmm or ddmmhhmm , m = month, d = day, h = hour, m = minute

... field separator

CALLtype where type is IN, CID, or other {CALLTYPE}

... field separator

LINElineid where lineid is the phone line identifier, NO-LINE or -

... field separator

NMBRnumber where number is the caller's phone number, NO-NUMBER or -

... field separator

NAMEname where name is the caller's name, NO NAME or -

+++ end of the information part of the message

If the gateway is on a smartphone or connects to a smartphone, the CALLtype must be PID for incoming calls or
PUT for
outgoing calls. (PUT
is new in API 1.7.)

(New in API 1.7) If the telco transmits a Message Waiting Indicator,
the CALLtype must be MWI.

The telco is not expected to supply DATEdatetime and NMBR so the gateway must fill these in as follows:

use current date and time for the DATEdatetime field

use the text 'Voicemail' for NMBR

The gateway must fill in NAME depending on the kind of MWI sent by
the telco, which is usually one of two types:

a simple on/off MWI, usually used by US telcos, in which case NAME
should contain the text 'Message(s) Waiting' or 'No
Messages Waiting'
respectively. An "off" status would be sent only to transition from the
MWI being "on".

a count of the messages waiting, usually used by UK telcos, in
which case NAME should have the text '1 Message
Waiting', '2 Messages Waiting',
etc., up to the maximum of '255 Messages Waiting'. The text 'No Messages Waiting'
should be in NAME when there's a transition from one or more
messages waiting, to zero, after they have all been

listened to.

Example for US telcos:

CALL: ###DATE04172005...CALLMWI...LINEHOME...NMBRVoicemail...

NAMEMessage(s) Waiting+++

CALL: ###DATE04172136...CALLMWI...LINEHOME...NMBRVoicemail...

NAMENo Messages Waiting+++

Example for UK telcos:

CALL: ###DATE04221303...CALLMWI...LINEHOME...NMBRVoicemail...

NAME1 Message Waiting+++

CALL: ###DATE04221619...CALLMWI...LINEHOME...NMBRVoicemail...

NAME5 Messages Waiting+++

CALL: ###DATE04230839...CALLMWI...LINEHOME...NMBRVoicemail...

NAMENo Messages Waiting+++

CALLINFO:

A text line that indicates the telephone lineid and call start/end information. It is sent to the server and converted into an END: text line
when a call completes. The text line is comprised of field pairs, the first contains the field name and the second contains the field data.
Fields are separated by ..., the first field starts after ### and the last field ends in +++. The call start/end information is only obtained

from gateways that provide such info:

CALLINFO: ###<end>...DATE<datetime>...SCALL<dt>...ECALL<dt>...CALL<io>...

LINE<lineid>...NMBR<tn>...NAME<name>+++

The CALLINFO: line has the following fields:

<label><data> Description

start of the information part of the message being sent to the server

end where end is either BYE or CANCEL

... field separator

DATEdatetime where datetime is mmddhhmm or ddmmhhmm, m = month, d = day, h = hour, m = minute

... field separator

SCALLdate
time

where start of call date is mm/dd/yyyy, a space and time is hh:mm:ss in 24-hour format, m = month, d =
day, y = year, h = hour, m = minute, s=second

... field separator

ECALLdate
time

where end of call date is mm/dd/yyyy, a space and time is hh:mm:ss in 24-hour format, m = month, d =
day, y = year, h = hour, m = minute, s=second

... field separator

CALLio where type is either IN or OUT (this is not a pass through of the CALL: CALLtype)

... field separator

LINElineid where lineid is the phone line identifier, NO-LINE or -

... field separator

NMBRnumber where number is the caller's phone number, NO-NUMBER or -

... field separator

NAMEname where name is the caller's name, NO NAME or -

+++ end of the information part of the message

GOODBYE (new in API 1.6) (note that there is no trailing colon)

The definition of GOODBYE lines for gateways is the same as for Feature Set 1 clients. Unless otherwise noted, changes made to
GOODBYE lines in API version 1.6 and higher will apply equally to clients and
gateways. Click here to go to the Feature Set 1 definition of

GOODBYE lines.

HELLO: (new in API 1.5)

The definition of HELLO: lines for gateways is the same as for
Feature Set 1 clients, except that the word 'client' at the beginning of the
HELLO: IDENT: <ident> string is replaced with the word 'gateway'.
Unless otherwise noted, changes made to HELLO: lines in API version

1.5
and higher will apply equally to clients and gateways. Click here to go to the Feature Set 1 definition of HELLO: lines.

MSG: (gateway alerts)

A text line containing a gateway alert that is sent to the server, saved in the call log and then sent to clients. It has free-form text only
and no field pairs.

It has the {MSGTYPE} Category Structure for Server/Gateway Alerts.

Example of an ncid2ncid gateway alert:

MSG: fromhost1 fedora-server:3333 reconnected

MSG: (gateway output)

A text line containing a gateway message that is sent to the clients and saved in the call log.

It has the {MSGTYPE} Category Structure for Client/Gateway Output Lines.

NOT:

A notification text line of a smartphone message. It is sent to the server and converted into a NOT: text line when a smartphone
notification is received.

It has the {MSGTYPE} Category Structure for Client/Gateway Output Lines.

Forwarding Gateway (Server-to-Server) (new in API 1.4)

You might want to implement a Forwarding Gateway in the following scenarios:

You have two or more instances of ncidd running to monitor separate modems
and you want clients to display call activity from
both (or more) modems. Most clients can connect to only one ncidd instance at a time, but by using a Forwarding Gateway you can

combine the call activity from several sending
servers to a single receiving server. Then, all clients would connect to the single
receiving server.

You have two or more instances of ncidd running on separate network subnets.

Distributed with NCID is the ncid2ncid gateway which allows up to four
sending servers to be combined and transmitted to a single receiving
server.

There needs to be a method to distinguish which call activity is
being forwarded. This method involves prefixing line types with a "+".
When
ncid2ncid collects call activity from the sending servers, it adds
the "+" before transmitting it to the single receiving server. The receiving

server (an instance of ncidd) strips the "+" and sends the call activity
to all listening clients.

Here's a hypothetical example: Two Raspberry Pi computers are running
ncidd and each have their own modem to monitor. A third computer
running
Fedora has no access to modems but does have an Apple iPad and an Android
tablet connecting as ncid clients. All of these devices

are on the same
network subnet.

RPi #1, IP address 192.168.9.101, port 3333

RPi #1, IP address 192.168.9.102, port 3334

Fedora, IP address 192.168.9.111, port 3335

Apple iPad and Android tablet both configured to connect to the Fedora computer, port 3335.

This will require ncid2ncid to be configured such that RPi#1 and RPi#2
are two sending servers and the Fedora computer is the receiving
server.

 +-------------------------+

 | ncid2ncid on Fedora |

 | |

RPi#1==>|sending server #1 (CID:) | +-----------------+

 | | | (CID:)|==>Apple iPad

 | receiving server (+CID:)|==>| ncidd on Fedora |

 | | | (CID:)|==>Android tablet

RPi#2==>|sending server #2 (CID:) | +-----------------+

 | |

 +-------------------------+

CLIENT IMPLEMENTATION

implement a Feature Set 1 client

(New in API 1.5) send zero or more HELLO: lines at connect

if a call log is received, it may also:

contain XXXLOG: text lines where XXX
is one of the {CALLTYPE} or {MSGTYPE} designated Feature Set 2 in the Categories table;
these should be parsed and displayed

contain ENDLOG: text lines which can be optionally parsed and displayed

receive zero or more OPT: <option> lines

receive a 300 End of server startup message

configure options received by OPT: lines

(New in API 1.3) Unless otherwise noted, all OPT: lines output by
the server are for informational and troubleshooting purposes only.
Clients can optionally make use of them by giving the user a
way to display them. Otherwise, clients are not required to display them, do

not need to take any action on them and can safely ignore them.
See Feature Set 1 OPT: definition and Feature Set 1: Client
Implementation for more information.

possibly receive a CIDINFO: at the end of the call

possibly receive any of the {CALLTYPE} or {MSGTYPE} designated Feature Set 2 in the Categories table

possibly receive an END: line whenever a call completes

ignore all other lines

Optional Client-to-Module

The optional client module lines are the same as in Feature Set 1, except the call or message type list is expanded and includes the
{CALLTYPE} and {MSGTYPE} designated Feature Set 2 in the Categories table.

(New in API 1.5) Send zero or more HELLO:
lines at connect. In particular, sending a HELLO: CMD: no_log
line can improve performance
because it forces the server not to send
the call log.

Feature Set 3: Client Job Support

A client can send a "job" to the server to control certain server features and/or to query/update certain server settings. As an example, a
connected client can trigger the creation of an entry in ncidd.alias, or add a phone number to ncidd.blacklist, on-the-fly.

The majority of the Client Jobs sent by a client are completed immediately by the server and the server sends back the results. No
further
interaction between the client and server is needed.

The exceptions are the REQ: UPDATE and REQ: UPDATES Client Jobs (commands). These work by having the server create temporary copies of the
call log(s)
and then applying alias updates to them. The server sends back a
summary to the user of what will be changed. The server is then free

to accept the next set of Client Jobs from any connected client.

NOTE: The server does not support concurrent clients issuing the
REQ: UPDATE and REQ: UPDATES Client Jobs.
This is not enforced.

The temporary call log(s) remain in a limbo state until the server
receives a WRK: <command> line type.
When <command> indicates acceptance,
the server removes the
original call log(s) and replaces them with the temporary one(s). When <command> indicates rejection (cancellation), the

server
removes the temporary call log(s).

When you use Client Jobs, you need to keep in mind their effect on
the state of the alias, blacklist and whitelist tables in the server's memory and
the effect on the current call log that may
already be loaded by all connected clients.

Updates to the alias, blacklist and whitelist files execute the
external ncidutil tool via the REQ: <alias|black|white> commands. The
client that performs these changes should
follow up with a REQ: RELOAD request to
update the server's tables in memory. Such changes
are then
immediately available to all connected clients as call activity
continues. You can batch the updates by sending several changes

in a row, followed by a single REQ: RELOAD request.

Updates to call log(s) execute the external cidupdate tool via REQ: UPDATE | UPDATES commands.
The client that performs these
changes should follow up with a REQ: REREAD request to have the modified
current call log resent to the client. You can batch the

updates by sending several changes in a row, followed by a single REQ: REREAD request. Only the client that
requests the REQ: REREAD
will be updated;
all other connected clients will either need to be manually
restarted, or manually execute a REQ: REREAD
request.

OVERVIEW OF AVAILABLE CLIENT JOBS

Client Jobs are initiated when clients send REQ:
line types to the server. The general format is:

REQ: <command> [<arguments>]

When an already-initiated Client Job requires additional information
from the user, the client will send WRK:
line types to the server. The
general format is:

WRK: <command> <arguments>

Commands and arguments are case sensitive.

See the table at the beginning of Client Job Examples for brief descriptions of each REQ: and WRK: command.

At a minimum, the Client Jobs needed to query and add an alias are as follows. Blacklist/whitelist queries and updates are similar.

Step Job Request What it does

1
REQ: INFO <number>&&
<name>

Check to see if an entry exists in alias/blacklist/whitelist

2 REQ: alias <add> <arguments> Write a new entry to ncidd.alias

3 REQ: RELOAD Force the NCID server to reload the modified alias list

4 REQ: UPDATE | UPDATES Allow the user to preview the update to the call log(s)

5 WRK: ACCEPT LOG | LOGS User commits the update(s)

6 REQ: REREAD
Force the server to resend the updated current call log to the client performing the
update

SERVER IMPLEMENTATION

when a client establishes a connection to the server, send a list
of server-supported Client Job options to client, one OPT: <option>
line for each option,
just before sending 300 End of server startup message

process user-initiated Client Jobs in response to client REQ: and WRK:
requests

Server Output Lines

The general structure of Server Output Lines consists of three line types: a start-of-server-data line, one or more lines of the server data, then
an end-of-server-data line.

Each start-of-server-data line is paired with a specific end-of-server-data line as indicated below. For clarity, lines are
indented to show their
logical structure.

400 Start of data requiring OK

 INFO: <data returned for the request>

 INFO: <data returned for the request>

 ...

410 End of data

401 Start of data requiring ACCEPT or REJECT

 INFO: <data returned for the request>

 INFO: <data returned for the request>

 ...

410 End of data

402 Start of data showing status of handled request

 RESP: <a server output line>

 RESP: <a server output line>

 ...

411 End of response

403 Start of data defining permitted requests

 INFO: <data returned for the request>

 INFO: <data returned for the request>

 ...

411 End of response

The contents of the INFO: and RESP: lines depend entirely on the Client Job
being processed.

For example, if a client sends a REQ: REREAD
request ("resend call log"), the server will output line types 250 - 254, OPT: and 300 exactly as
specified in Feature Set 1: Modem and Device Support. Their definitions are not included below.

The rest of this section contains the definitions of each server output
line type for Client Jobs.

400

Start of data that the client should present to the user for
acknowledgment. The data is in the form of one or more INFO: lines and ends
with 410.

(Added in API 1.2) Nothing is sent back to the server.

400 Start of data requiring OK

401

Start of data that requires ACCEPT or REJECT from client (a client should follow up with an appropriate WRK: response). The data is in the
form of one or more INFO: lines and ends with 410.

401 Start of data requiring ACCEPT or REJECT

402

Start of data showing the server results of a Client Job. The data
is in the form of one or more RESP: lines
and ends with 411.

402 Start of data showing status of handled request

403

When a Client Job is submitted, the server will validate the
request and send back one or more INFO: lines to indicate what actions the
client can do next, followed by an ending 411 line.

For example, a Client Job can request the status
of a phone number and as part of the server response
there will be an indication as to
whether the phone number
is present or not in the blacklist. This tells the client making
the request whether it can give the user the

option to
remove it from, or add it to, the blacklist.

403 Start of data defining permitted requests

410

End of data returned from server. Used to end
400 and 401
server messages:

410 End of data

411

End of response. Used to end 402 and 403 server messages:

411 End of response

INFO:

The server will send an appropriate beginning 40x line, then one or more INFO: lines and finally an ending 41x line.

The server outputs INFO: lines
in one of two formats:

Format 1: Free form text, with as many INFO: lines as needed.

It will have a beginning 401
line, then the INFO: lines and finally an ending 410 line.

Format 2: A specific structure unique to REQ: INFO requests.

It will have a beginning 403
line, then the INFO: lines and finally an ending 411 line.

RESP:

The server will send a 402 line, then one or more RESP: lines and finally an ending 411 line.

The server sends one RESP: line for each
line of server output.

 RESP: <a server output line>

RPLY: dial - <status>

Send the client the status of a REQ: DIAL|DIAL_ABORT Client Job, where <status> can be one of:

 hungup <number> on line "<lineid>"

 dial failed, modem returned <error text from modem>

 format error: <error text from modem>

A RPLY: line normally follows the server 411 response to REQ: DIAL|DIAL_ABORT. However, this is not
guaranteed and a client should
expect RPLY:
at any time.

CLIENT IMPLEMENTATION

If you want to implement a client to take advantage of Client Jobs:

you will likely want to design a GUI as Client Jobs
are intended to interact with a user

client must process server options (OPT:
lines) which are provided just before a 300 End of server startup line

(New in API 1.3) Unless otherwise noted, all OPT: lines output by the server are for informational and troubleshooting purposes only.
Clients can optionally make use of them by giving the user a
way to display them. Otherwise, clients are not required to display them, do

not need to take any action on them and can safely ignore them.
See Feature Set 1 OPT: definition and Feature Set 1: Client
Implementation for more information.

A graphical NCID client will typically have the following features:

A window displaying contents of the current call log (a.k.a. call history). When the user selects a displayed line, the client will initiate
a REQ: INFO alias request to find out what actions are permitted for the caller phone number and name on that line (e.g., if there is

no alias give an option to add a new one, if the number is on the blacklist/whitelist give an option to remove it, etc.).

Provide a way for the user to manually force the server to reload the server's alias, blacklist and whitelist files via a
REQ: RELOAD
request.

(Removed in API 1.3) only if the server sends OPT: hangup will the user have
an option to force the server to reload the
blacklist/whitelist files

Provide a way for the user to manually force the server to update the current call log or all call logs with aliases via the
REQ:
UPDATE | UPDATES request.

Provide a way for the user to manually force the server to resend the current call log to the client via the REQ: REREAD request.

(New in API 1.6) When the user selects a displayed line, provide a way
to dial a number, or abort a dial in progress.

(New in API 1.6) Monitor the server for RPLY:
lines. These give the success/fail result of dialing a number. Display
to the user as
appropriate.

Client-to-Server

Client Jobs are initiated when clients send REQ:
line types to the server. The general format is:

REQ: <command> [<arguments>]

where <command> is one of the following:

alias | black | white | DIAL | DIAL_ABORT | INFO | PAUSE | RELOAD | REREAD | UPDATE | UPDATES

(New in API 1.6) The DIAL and DIAL_ABORT commands were added to the above list.

(New in API 1.12) The PAUSE command was added to the above list.

When an already-initiated Client Job requires additional information
from the user, the client will send WRK:
line types to the server. The
general format is:

WRK: <command> <arguments>

where <command> <arguments> is one of the following:

ACCEPT LOG | ACCEPT LOGS | REJECT LOG | REJECT LOGS

Commands and arguments are case sensitive.

The following Client Jobs are supported.

REQ: alias add "<number>&&<alias>" "<type>&&<name>"

Add to alias list. A client would typically offer the user the option to add an item to the alias list if the INFO: alias line returned NOALIAS.

where:

number is from the call log

alias is input from the user

type is the alias type or NOALIAS if none

name is from the call log

REQ: alias modify "<number>&&<alias>" "<type>&&<name>"

Modify alias. A client would typically offer the user the option to modify an alias if the INFO: alias line did not return NOALIAS.

where:

number is from the call log

alias is new alias

type is the alias type or NOALIAS if none

name is from the call log

Modifying an alias and specifying a new alias of nothing (null) is the same as removing an existing alias.

REQ: alias remove "<number>&&" "<type>&&<name>"

Remove alias. A client would typically offer the user the option to modify an alias if the INFO: alias line did not return NOALIAS.

where:

number is from the call log

type is the alias type or NOALIAS if none

name is from the call log

REQ: black add "<item>" "<comment>"

Add an item to the blacklist. Item is the name or number from the call log file. A client would typically offer the user the option to
add an
item to the black list if the INFO: response line was INFO: neither.

(Removed in API 1.1) The server must have
sent and the client must have received,
OPT: hangup to enable this Client Job.

REQ: black remove "<item>" ""

Remove from black list. Item is the name or number from the call log file. A client would typically offer the user the option to remove an
item from the black list if the INFO: response was either INFO: black name or INFO: black number.

(Removed in API 1.1) The server must have
sent and the client must have received,
OPT: hangup to enable this Client Job.

REQ: white add "<item>" "<comment>"

Add to white list. Item is the name or number from the call log file. A client would typically offer the user the option to add an item to the
white list if the INFO: response
line was INFO: neither.

(Removed in API 1.1) The server must have
sent and the client must have received,
OPT: hangup to enable this Client Job.

REQ: white remove "<item>" ""

Remove from white list. Item is the name or number from the call log file. A client would typically offer the user the option to remove an
item from the white list if the INFO: response line was either INFO: white name or INFO: white number.

(Removed in API 1.1) The server must have
sent and the client must have received,
OPT: hangup to enable this Client Job.

REQ: <DIAL|DIAL_ABORT> <number>&&<name>&&<lineid> (new in API 1.6)

Use a modem locally connected to the server to dial <number>. <name> is provided for display purposes only.

When the server has more than one modem configured for dialing out,
<lineid> specifies which modem, e.g., POTS, HOME, etc, should be
used. If the lineid does not match a configured modem, the server may
choose one.

The number, name and lineid are separated by &&.

No check is made to see if <number> is blacklisted; blacklisted
numbers can be dialed.

Use the REQ: DIAL_ABORT line to cancel a dial in progress.

Once the server has issued the ATDT command, it must start a dial delay timer (a minimum of 5 seconds is suggested) and proceed with
its normal polling process to check for client/gateway connections and data, including a possible REQ: DIAL_ABORT Client
Job. While the

dial delay timer counts down, the server must monitor and react to the status of the modem.

If the timer reaches zero without detecting a problem, the dial is considered successful and assumes the user has picked up the line.
The
server then sends a modem ATH0 command sequence to disconnect from
the phone line; as long as the user is still talking to the dialed

party,
the call itself will not be terminated.

When the dial's success, user abort, or failure is determined, the server will send the dial status using the RPLY: line type. It gets sent to
the client that initiated the dial.

The server will generate an OUT: line if the number
is successfully dialed.

A special case exists where other devices can detect outgoing calls. In order to avoid creating a duplicate OUT:
line, a server needs to
check all
HELLO: IDENT: <ident> lines for the presence of the uppercase text [OUT] following the version. When found, a flag is set
to

prevent the server from generating the OUT: line.

For example, the sip2ncid gateway can detect outgoing calls. It depends
on the SIP implementation of the Telco or VoIP provider.
When
sip2ncid connects to the server, the <ident> string
will have [OUT], so set a flag. If REQ: DIAL
is successful, it is assumed that sip2ncid will

have generated the OUT: as part of its normal processing.

REQ: INFO <number>&&<name>

REQ: INFO <number>&&<name>&&<lineid>

Request the status of alias, blacklist and whitelist for a given
number, name and optional lineid.

(New in API 1.6) Also requests the status of whether the number can
be dialed.

The number, name and optional lineid are separated by &&.

To retrieve the alias status for number and name, there must be an
exact match on both.

To retrieve the alias status for the optional lineid, there must be
an exact match on the lineid.

To retrieve whitelist and blacklist status, either number, name, or both number and name can match the blacklist or whitelist entry (i.e.
both number and name do not have to match, but one of them must
match).

The server responds with three INFO: lines
that have the following general format:

First INFO: line contains alias status:

INFO: alias <name|number type> "<entry>" [<lineid type>] "<entry>"

where <name|number type> can be one of:

NOALIAS | NMBRONLY | NAMEONLY | NMBRNAME | NMBRDEP | NAMEDEP

and <lineid type> can be one of:

NOALIAS | LINEONLY

if alias or lineid is NOALIAS then entry is ""

Second INFO: line contains blacklist and whitelist status:

INFO: <status>

where <status> can be one of:

neither

black name|number "<entry>"

white name|number "<entry>"

both name|number "<white entry>" "<black entry>"

(New in API 1.6) Third INFO: line indicates whether the server has been enabled to dial the number using a locally attached
modem:

INFO: dial <status>

where <status> can be one of:

NODIAL | <number>&&<name>

REQ: PAUSE <minutes> (new in API 1.12)

where <minutes> can be one of:

-1 | 0 | <minutes>

A value of -1 will query the server's remaining pause time and return it to the client.

A value of 0 will immediately resume normal Internal Hangup and external Hangup Extension(s).

<minutes> to temporarily disable the server's Internal Hangup and external Hangup Extension(s) for a duration of <minutes>.

No maximum is defined or enforced by the server but it is recommended that clients limit a user to 600 minutes (10 hours).

The server will resume automatic hangup at the end of the pause time or when the client requests an end to the pause time. You might
want to use this new feature if you are expecting a legitimate call but you don't yet have the phone number. Once they call you, you can

then whitelist the caller using the normal means.

REQ: RELOAD

Reload alias, blacklist and whitelist files.

(Removed in API 1.3) (the blacklist and whitelist files will not be reloaded unless the server OPT: hangup option is received)

REQ: REREAD

Request that the server resend the call log. It is only sent to the
client issuing REQ: REREAD. The server
responds with line types 250 - 254,
OPT: and 300 exactly as specified in Feature Set 1: Modem and Device Support.

REQ: UPDATE

Make a temporary copy of the current call log to process any alias changes. This executes the external cidupdate tool. See
also Note 1
and Note 2 below.

REQ: UPDATES

Make temporary copies of all call logs to process any alias changes. This executes the external cidupdate tool. See
also Note 1 and Note
2 below.

WRK: ACCEPT LOG

The user has indicated that changes to the current call log by
REQ: UPDATE have been accepted. This causes
the original call log to be
removed and replaced with the temporary call log. See also Note 1 and Note 2
below.

WRK: REJECT LOG

The user has indicated that changes to the current call log by
REQ: UPDATE have been rejected. This causes
the temporary call log to be
removed and no permanent updates take place. See also Note 1 below.

WRK: ACCEPT LOGS

The user has indicated that changes to all call logs by
REQ: UPDATES have been accepted. This causes
the original call logs to be
removed and replaced with the temporary call logs. See also Note 1 and Note 2
below.

WRK: REJECT LOGS

The user has indicated that changes to all call logs by
REQ: UPDATES have been rejected. This causes
the temporary call logs to be
removed and no permanent updates take place. See also Note 1 below.

Note 1: Clients are responsible for keeping track of pending call log updates initiated by REQ: UPDATE | UPDATES. The temporary call logs will
remain on the server indefinitely until a client sends a
WRK: command.

Note 2: The cidupdate tool preserves
the date/time stamp of the original call log(s) when replacing them
with the temporary log(s).

REQUIREMENTS FOR DIAL-A-NUMBER CLIENT JOB (new in API 1.6)

lineid

The lineid is not the operating system device name, i.e., it is not
/dev/ttyACM0 or COM1: or similar.

Click on the links to be taken to the complete definition:

The REQ: DIAL Client Job uses lineid to allow the user to select which modem will be used to dial the number.

The REQ: INFO Client
Job uses the optional lineid only to check whether there is an alias for lineid. The associated INFO: dial server
response does not return a lineid on purpose because the user, not the server, chooses the lineid for dialing.

Server Implementation

The server considers the dial-a-number feature to be enabled if all of the following are true:

ncidd.conf::cidinput indicates an "AT" modem is attached
the modem was successfully initialized when ncidd was started

the REQ: INFO number to be dialed consists
of only digits

If the above conditions are not met, the server will respond to the
REQ: INFO Client Job with the following third
INFO: line:

INFO: dial NODIAL

The server does not modify the number to be dialed. It is passed as-is
to the modem and dialed using a normal modem ATDT command
sequence.

The server does not care if a number is blacklisted or not. A blacklisted
number can be dialed like any other number.

Client Implementation

The client usually interacts with the user by presenting the current
call history and allowing a line to be selected. No validation of the
selected
line type (CID:, HUP:, NOT:, etc.) should be needed because it is
the NMBR field pair that ultimately determines the number to dial.

It is the responsibility of the client initiating this Client Job to make sure it sends the proper leading digits to handle long distance calls, send
country codes, access outside lines, etc.

The client can optionally validate the number somewhat: number of digits, not all zeros, proper area code, no 555-01XX fictional numbers,
etc.
This validation is optional because it needs to be country specific.

If the client's number validation fails, the REQ: DIAL Client Job should not be sent to the server.

https://en.wikipedia.org/wiki/555_%28telephone_number%29%23Fictional_usage

CLIENT JOB EXAMPLES

Clicking on the Job Request will show examples of the Client/Server exchanges.

Clicking on the (client) link in the table below will take you to more detailed information and is usually the
place you want to start. Clicking
on the (server) link takes you to an appropriate Server Output section.

Job Request Description

REQ: alias <add|modify|remove> (client) (server 402) Manipulate entries in alias file

REQ: black <add|remove> (client) (server 402) Manipulate entries in blacklist file

REQ: white <add|remove> (client) (server 402) Manipulate entries in whitelist file

REQ: DIAL <number>&&
<name>&&<lineid>

REQ: DIAL_ABORT <number>&&
<name>&&<lineid>

(client) (server 402) Dial a number (new in API 1.6)

REQ: INFO <number>&&<name>

REQ: INFO <number>&&
<name>&&<lineid>

(client) (server 403) Query alias, blacklist and whitelist status for a given number, name
and/or lineid

REQ: PAUSE <minutes> (client) (server 402) Pause hangup for a number of minutes (new in API 1.12)

REQ: RELOAD
(client) (server 400) Force the NCID server to reload alias, blacklist and whitelist tables into
the server's memory

REQ: REREAD (client) (server) Force the NCID server to resend the current call log to the client

REQ: UPDATE
(client) (server 401) Temporarily update the current call log to process any alias changes.
Changes are made permanent only if client responds with WRK: ACCEPT LOG.

REQ: UPDATES
(client) (server 401) Temporarily update all call logs to process any alias changes. Changes
are made permanent only if client responds with WRK: ACCEPT LOGS.

WRK: ACCEPT LOG
(client) (server) Accept and make permanent the server's temporary updates to the current
call log

WRK: REJECT LOG (client) (server) Reject (cancel) the server's temporary updates to the current call log

WRK: ACCEPT LOGS (client) (server) Accept and make permanent the server's temporary updates to all call logs

WRK: REJECT LOGS (client) (server) Reject (cancel) the server's temporary updates to all call logs

Below are examples of the Client/Server exchanges for Job Requests.

REQ: and WRK: lines are generated by the client. For readability, server responses are indented and long lines split using the "" continuation
character. For brevity, the full paths to ncidutil, cidupdate, ncidd.alias, ncidd.blacklist, ncidd.whitelist and ncidd.conf::cidlog have been

removed.

The majority of the alias examples use the NAMEDEP type ("change the
name depending on the phone number") since it is most widely used.

REQ: alias <add|modify|remove> "<number>&&<alias>" "<type>&&<name>"

First check to see if there is already an alias on file....

REQ: INFO 4075551212&&WIRELESS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: neither

 INFO: dial 4075551212&&WIRELESS

 411 End of response

We got alias NOALIAS for a call, so add it...., the second NOALIAS is for a lineid.

REQ: alias add "4075551212&&John on Cell" "NAMEDEP&&WIRELESS"

 ncidutil --ignore1 \

 --multi "ncidd.blacklist ncidd.whitelist" \

 "ncidd.alias" Alias add \

 "4075551212&&John on Cell" \

 "NAMEDEP&&WIRELESS" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.alias

 RESP: added: alias NAME * = "John on Cell" if 4075551212

 RESP: Done.

 411 End of response

Modify it....

REQ: alias modify "4075551212&&John's iPhone" "NAMEDEP&&John on Cell"

 ncidutil --ignore1 \

 --multi "ncidd.blacklist ncidd.whitelist" \

 "ncidd.alias" Alias modify \

 "4075551212&&John's iPhone" \

 "NAMEDEP&&John on Cell" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.alias

 RESP: from: alias NAME * = "John on Cell" if "4075551212"

 RESP: to: alias NAME * = "John's iPhone" if

 "4075551212"

 RESP: Done.

 411 End of response

Remove it....

REQ: alias remove "4075551212&&" "NAMEDEP&&John's iPhone"

 ncidutil --ignore1 \

 --multi "ncidd.blacklist ncidd.whitelist" \

 "ncidd.alias" Alias remove \

 "4075551212&&" "NAMEDEP&&John's iPhone" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.alias

 RESP: removed: alias NAME * = "John's iPhone" if

 "4075551212"

 RESP: Done.

 411 End of response

Note that the following are equivalent and are treated as "alias remove"
because the new "...&&<alias>" is null.

REQ: alias modify "4075551212&&" "NAMEDEP&&John's iPhone"

REQ: alias remove "4075551212&&" "NAMEDEP&&John's iPhone"

REQ: black <add|remove> "<number|name>" "<comment>"

First check to see if there is already a blacklist entry on file....

REQ: INFO 4075551212&&WIRELESS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: neither

 INFO: dial 4075551212&&WIRELESS

 411 End of response

We got neither (i.e., not in blacklist nor whitelist) so add it to blacklist based on the number and without a comment....

REQ: black add "4075551212" ""

 ncidutil "ncidd.blacklist" Blacklist add "4075551212" "" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.blacklist

 RESP: added: 4075551212

 RESP: Done.

 411 End of response

Client sends REQ: RELOAD (not shown) to force
server to update the table in the server's memory.

Query the status....

REQ: INFO 4075551212&&WIRELESS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS

 INFO: black number "4075551212"

 INFO: dial 4075551212&&WIRELESS

 411 End of response

We got black number as expected.

Remove it...

REQ: black remove "4075551212" ""

 ncidutil "ncidd.blacklist" Blacklist remove "4075551212" "" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.blacklist

 RESP: removed: 4075551212

 RESP: Done.

 411 End of response

Other miscellaneous examples that assume the blacklist file is empty and that a REQ: RELOAD (not shown) is done between
updates....

Add a new blacklisted number with a comment....

REQ: black add "4075551212" "imposter!"

 ncidutil "ncidd.blacklist" Blacklist add "4075551212" \

 "imposter!" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.blacklist

 RESP: added: 4075551212 # imposter!

 RESP: Done.

 411 End of response

Add a new blacklisted name with comment, then request status and notice black name in the response....

REQ: black add "WIRELESS" "telemarketer"

 ncidutil "ncidd.blacklist" Blacklist add "WIRELESS" \

 "telemarketer" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.blacklist

 RESP: added: WIRELESS # telemarketer

 RESP: Done.

 411 End of response

REQ: RELOAD

 (server responses not shown)

REQ: INFO 4075551212&&WIRELESS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: black name "4075551212"

 INFO: dial 4075551212&&WIRELESS

 411 End of response

Add a new blacklisted number with a match name....

REQ: black add "4075551212" "=Fax machine keeps calling"

 ncidutil "ncidd.blacklist" Blacklist add "4075551212" \

 "=Fax machine keeps calling" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.blacklist

 RESP: added: 4075551212 #=Fax machine keeps calling

 RESP: Done.

 411 End of response

REQ: white <add|remove>
"<number|name>" "<comment>"

For the purpose of this example, before adding whitelist entries
we'll create a blacklist entry to cover the entire area code 407
and include an appropriate comment...

REQ: black add "^407" "blacklist all numbers in area code 407"

 ncidutil "ncidd.blacklist" Blacklist add "^407" \

 "blacklist all numbers in area code 407" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.blacklist

 RESP: added: ^407 # blacklist all numbers in area code 407

 RESP: Done.

 411 End of response

Client sends REQ: RELOAD (not shown) to force
server to update the table in the server's memory.

Check the status on two different phone numbers in area code 407...

REQ: INFO 4075551212&&ORLANDO, FL

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS"

 INFO: black number "4075551212"

 INFO: dial 4075551212&&ORLANDO, FL

 411 End of response

REQ: INFO 8002221515&&TOLL FREE

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: black number "8002221515"

 INFO: dial 8002221515&&TOLL FREE

 411 End of response

We got black number as expected on both numbers. Add the first one to the whitelist based on the number and without a
comment....

REQ: white add "4075551212" ""

 ncidutil "ncidd.whitelist" Whitelist add "4075551212" "" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.whitelist

 RESP: added: 4075551212

 RESP: Done.

 411 End of response

REQ: RELOAD

 (server responses not shown)

Check the status on the numbers again...

REQ: INFO 4075551212&&ORLANDO, FL

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: white number "4075551212"

 INFO: dial 4075551212&&ORLANDO, FL

 411 End of response

REQ: INFO 8002221515&&TOLL FREE

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: black number "8002221515"

 INFO: dial 8002221515&&TOLL FREE

 411 End of response

As expected, we got white number on the first one and black number on the second.

Remove it...

REQ: white remove "4075551212" ""

 ncidutil "ncidd.whitelist" Whitelist remove "4075551212" "" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.whitelist

 RESP: removed: 4075551212

 RESP: Done.

 411 End of response

Other miscellaneous examples that assume the whitelist file is empty and that a REQ: RELOAD (not shown) is done between
updates....

Add a new whitelisted number with a comment....

REQ: white add "4075551212" "Lottery Commission"

 ncidutil "ncidd.whitelist" Whitelist add "4075551212" \

 "Lottery Commission" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.whitelist

 RESP: added: 4075551212 # Lottery Commission

 RESP: Done.

 411 End of response

Add a new whitelisted name with comment, then request status and notice white name in the response....

REQ: white add "ORLANDO, FL" "Chamber of Commerce"

 ncidutil "ncidd.whitelist" Whitelist add "ORLANDO, FL" \

 "Chamber of Commerce" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.whitelist

 RESP: added: "ORLANDO, FL" # Chamber of Commerce

 RESP: Done.

 411 End of response

REQ: RELOAD

 (server responses not shown)

REQ: INFO 4075551212&&ORLANDO, FL

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: white name "ORLANDO, FL"

 INFO: dial 4075551212&&ORLANDO, FL

 411 End of response

Add a new whitelisted number with a match name....

REQ: white add "4075551212" "=Walt Disney World"

 ncidutil "ncidd.whitelist" Whitelist add "4075551212" \

 "=Walt Disney World" 2>&1

 402 Start of data showing status of handled request

 RESP: Modified: ncidd.whitelist

 RESP: added: 4075551212 #=Walt Disney World

 RESP: Done.

 411 End of response

REQ: <DIAL|DIAL_ABORT> <number>&&<name>&&<lineid> (new in API 1.6)

Check the status of the number the user selected from call history...

Server has NOT been configured to dial the number...

REQ: INFO 4075551212&&WIRELESS&&POTS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: neither

 INFO: dial NODIAL

 411 End of response

Server HAS been configured to dial the number...

REQ: INFO 4075551212&&WIRELESS&&POTS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: neither

 INFO: dial 4075551212&&WIRELESS

 411 End of response

User selects option in client to dial the number and chooses
the option in the client to add a leading 1 for long distance
The dial
is successful...

REQ: DIAL 14075551212&&WIRELESS&&POTS

 402 Start of data showing status of handled request

 RESP: Dialed number 14075551212 on line "POTS"

 RESP: Pickup phone within 5 seconds

 411 End of response

 RPLY: dial - hungup 14075551212 on line "POTS"

Unsuccessful dial...

REQ: DIAL 14075551212&&WIRELESS&&POTS

 402 Start of data showing status of handled request

 RESP: Dialed number 14075551212 on line "POTS"

 RESP: Pickup phone within 5 seconds

 411 End of response

 RPLY: dial - dial failed, modem returned NO DIALTONE

Abort a dial in progress...

REQ: DIAL 14075551212&&WIRELESS&&POTS

 402 Start of data showing status of handled request

 RESP: Dialed number 14075551212 on line "POTS"

 RESP: Pickup phone within 5 seconds
 411 End of response

REQ: DIAL_ABORT 14075551212&&WIRELESS&&POTS

 402 Start of data showing status of handled request

 411 End of response

 RPLY: dial - hungup 14075551212 on line "POTS"

REQ: INFO <number>&&<name>

REQ: INFO <number>&&<name>&&<lineid>

This number and name have no alias, blacklist or whitelist entry...

REQ: INFO 4075551212&&WIRELESS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: neither

 INFO: dial 4075551212&&WIRELESS

 411 End of response

Same as above, except there's also no alias for <lineid> of POTS....

REQ: INFO 4075551212&&WIRELESS&&POTS

 403 Start of data defining permitted requests

 INFO: alias NOALIAS "" NOALIAS ""

 INFO: neither

 INFO: dial 4075551212&&WIRELESS

 411 End of response

An example showing blacklist and white list entries and aliases based on the number and lineid. The whitelist entry takes
precedence over the blacklist of the entire area
code; this is why REQ: INFO doesn't report black number .
For clarity, some

server responses to REQ: RELOAD are not shown....

REQ: RELOAD

 400 Start of data requiring OK

 INFO: Alias Table:

 INFO: Number of Entries: 2

 INFO: SLOT TYPE FROM TO DEPEND

 INFO: ---- ---- ---- -- ------

 INFO: 000 NAMEDEP * John on Cell "4075551212"

 INFO: 001 LINEONLY POTS CELL

 INFO: Blacklist Table:

 INFO: Number of Entries: 1

 INFO: SLOT ENTRY MATCH NAME

 INFO: ---- ----- ----------

 INFO: 000 "^407"

 INFO: Whitelist Table:

 INFO: Number of Entries: 1

 INFO: SLOT ENTRY MATCH NAME

 INFO: ---- ----- ----------

 INFO: 000 "4075551212"

 410 End of data

REQ: INFO 4075551212&&WIRELESS

 403 Start of data defining permitted requests

 INFO: alias NAMEDEP "4075551212'

 INFO: white number "4075551212"

 INFO: dial 4075551212&&WIRELESS

 411 End of response

REQ: INFO 4075551212&&WIRELESS&&POTS

 403 Start of data defining permitted requests

 INFO: alias NAMEDEP "4075551212" lineonly "CELL"

 INFO: white number "4075551212"

 INFO: dial 4075551212&&WIRELESS

 411 End of response

REQ: PAUSE <minutes> (new in API 1.12)

Check the status of a hangup pause...

REQ: PAUSE -1

 402 Start of data showing status of handled request

 RESP: Hangup not paused

 411 End of response

Pause for 3 hours and 30 minutes...

REQ: PAUSE 210

 402 Start of data showing status of handled request

 RESP: Pausing hangups for 3 hours 30 minutes

 411 End of response

Check how much time is left before hangups resume...

REQ: PAUSE -1

 402 Start of data showing status of handled request

 RESP: Remaining Time: 2 hours 22 minutes 22 seconds

 411 End of response

Cancel the hangup pause immediately...

REQ: PAUSE 0

 402 Start of data showing status of handled request

 RESP: Hangup enabled

 411 End of response

REQ: RELOAD

Force the NCID server to reload alias, blacklist and whitelist tables from their respective disk files into the server's memory:

REQ: RELOAD

 400 Start of data requiring OK

 INFO: Received Signal 1: Hangup: 1

 INFO: Reloading alias, blacklist and whitelist files

 INFO: Processed alias file: ncidd.alias

 INFO: Alias Table:

 INFO: Number of Entries: 6

 INFO: SLOT TYPE FROM TO DEPEND

 INFO: ---- ---- ---- -- ------

 INFO: 000 NAMEDEP * John on Cell "4075551212"

 INFO: 001 LINEONLY POTS CELL

 INFO: 002 NMBRONLY 6768048218 Caleb Vinson

 INFO: 003 NAMEONLY TOLL FREE TELEMARKETER

 INFO: 004 NMBRNAME OUT-OF-AREA UNAVAILABLE

 INFO: 005 NMBRDEP * 4075551212 "SMITH JEFF"

 INFO: Processed blacklist file: ncidd.blacklist

 INFO: Blacklist Table:

 INFO: Number of Entries: 18

 INFO: SLOT ENTRY MATCH NAME

 INFO: ---- ----- ----------

 INFO: 000 "^407"

 INFO: 001 "9075551414" "Fax machine keeps calling"

 INFO: 002 "2133750923" "FCC bad list 2015-12-14"

 INFO: 003 "2133750992" "FCC bad list 2015-12-14"

 INFO: 004 "2134150180" "FCC bad list 2015-12-14"

 INFO: 005 "2134566756" "FCC bad list 2015-12-14"

 INFO: 006 "2134771084" "FCC bad list 2015-12-14"

 INFO: 007 "2134879500" "FCC bad list 2015-12-14"

 INFO: 008 "2135038127" "FCC bad list 2015-12-14"

 INFO: 009 "2139227973" "FCC bad list 2015-12-14"

 INFO: 010 "2139925914" "FCC bad list 2015-12-14"

 INFO: 011 "2139925916" "FCC bad list 2015-12-14"

 INFO: 012 "2139925922" "FCC bad list 2015-12-14"

 INFO: 013 "2142284484" "FCC bad list 2015-12-14"

 INFO: 014 "2142388242" "FCC bad list 2015-12-14"

 INFO: 015 "2142694345" "FCC bad list 2015-12-14"

 INFO: 016 "2142698811" "FCC bad list 2015-12-14"

 INFO: 017 "2142815189" "FCC bad list 2015-12-14"

 INFO: Processed whitelist file: ncidd.whitelist

 INFO: Whitelist Table:

 INFO: Number of Entries: 3

 INFO: SLOT ENTRY MATCH NAME

 INFO: ---- ----- ----------

 INFO: 000 "4075551212"

 INFO: 001 "4074441992" "Walt Disney World"

 INFO: 002 "ORLANDO, FL"

 INFO: Reloaded alias, blacklist and whitelist files

 410 End of data

REQ: REREAD

Force the server to resend the call log and OPT: lines to the client and if the call log is not empty....

REQ: REREAD

 CIDLOG: *DATE*12012015*TIME*0028*LINE*POTS*\

 NMBR*2956237064*MESG*NONE*NAME*Minnie Wallace*

 HUPLOG: *DATE*12012015*TIME*0105*LINE*POTS*\

 NMBR*2786279268*MESG*NONE*NAME*Sophie Reyes*

 ...

 250 End of call log

 OPT: hangup-1

 OPT: ...

 300 End of connection startup

Force the server to resend the call log and OPT: lines to the client, but if the server is not configured to send the call log....

REQ: REREAD

 251 Call log not sent

 OPT: hangup-1

 OPT: ...

 300 End of connection startup

Force the server to resend the call log and OPT: lines to the client, but if the call log is empty....

REQ: REREAD

 252 Call log empty

 OPT: hangup-1

 OPT: ...

 300 End of connection startup

Force the server to resend the call log and OPT: lines to the client, but if the call log file does not exist...

REQ: REREAD

 253 No Call log

 OPT: hangup-1

 OPT: ...

 300 End of connection startup

REQ: UPDATE

Update the current call log file with the latest alias changes,
store the changes temporarily and present a summary for the user
to accept or reject....

REQ: UPDATE

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 < /dev/null 2>&1

 401 Start of data requiring ACCEPT or REJECT

 INFO: There was 1 change to cidcall.log

 INFO:

 INFO: (NAMEDEP) Changed "John on Cell" to \

 "John's iPhone" for 4075551212 1 time

 410 End of data

If no changes were found, let the user know and do not prompt to
accept or reject....

REQ: UPDATE

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 < /dev/null 2>&1

 400 Start of data requiring OK

 INFO: There were no changes to cidcall.log

 410 End of data

REQ: UPDATES

Update all call log files with the latest alias changes,
store the changes temporarily and present a summary for the user to
accept or reject....

REQ: UPDATES

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 --multi --ignore1 < /dev/null 2>&1

 401 Start of data requiring ACCEPT or REJECT

 INFO: There were 2 changes to cidcall.log

 INFO: There were 224 changes to cidcall.log.1

 INFO: There were 14 cidcall.log.2

 INFO: There were 18 cidcall.log.3

 INFO: There were 24 cidcall.log.4

 INFO: There were 16 cidcall.log.5

 INFO:

 INFO: (NAMEDEP) Changed "John on Cell" to \

 "John's iPhone" for 4075551212 298 times

 410 End of data

If no changes were found, let the user know and do not prompt to
accept or reject....

REQ: UPDATES

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 --multi < /dev/null 2>&1

 400 Start of data requiring OK

 INFO: There were no changes to cidcall.log

 410 End of data

WRK: ACCEPT LOG

Alias changes have been applied to a temporary copy of the current
call log file and the user has accepted the changes. This
causes the server
to replace the current call log file with the temporary copy. No further
interaction with the user is needed.

REQ: UPDATE

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 < /dev/null 2>&1

 401 Start of data requiring ACCEPT or REJECT

 INFO: There was 1 change to cidcall.log

 INFO:

 INFO: (NAMEDEP) Changed "John on Cell" to \

 "John's iPhone" for 4075551212 1 time

 410 End of data

WRK: ACCEPT LOG

 mv cidcall.log.new cidcall.log

WRK: REJECT LOG

Alias changes have been applied to a temporary copy of the current
call log file and the user has rejected the changes. This
causes the server to remove the temporary copy of the current call log file. No further interaction with the user is needed.

REQ: UPDATE

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 < /dev/null 2>&1

 401 Start of data requiring ACCEPT or REJECT

 INFO: There was 1 change to cidcall.log

 INFO:

 INFO: (NAMEDEP) Changed "John on Cell" to \

 "John's iPhone" for 4075551212 1 time

 410 End of data

WRK: REJECT LOG

 rm cidcall.log.new

WRK: ACCEPT LOGS

Alias changes have been applied to temporary copies of all
call log files and the user has accepted the changes. This causes
the server
to replace the existing call log files with the temporary copies. No further
interaction with the user is needed.

REQ: UPDATES

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 --multi --ignore1 < /dev/null 2>&1

 401 Start of data requiring ACCEPT or REJECT

 INFO: There were 2 changes to cidcall.log

 INFO: There were 224 changes to cidcall.log.1

 INFO: There were 14 cidcall.log.2

 INFO: There were 18 cidcall.log.3

 INFO: There were 24 cidcall.log.4

 INFO: There were 16 cidcall.log.5

 INFO:

 INFO: (NAMEDEP) Changed "John on Cell" to \

 "John's iPhone" for 4075551212 298 times

 410 End of data

WRK: ACCEPT LOGS

 for f in cidcall.log.*[0-9]; do mv $f.new $f; done

 mv cidcall.log.new cidcall.log

WRK: REJECT LOGS

Alias changes have been applied to temporary copies of all
call log files and the user has rejected the changes. This causes the
server to remove the temporary copies of all call log files. No further interaction with the user is needed.

REQ: UPDATES

 cidupdate -a ncidd.alias -c cidcall.log < /dev/null 2>&1\

 --multi --ignore1 < /dev/null 2>&1

 401 Start of data requiring ACCEPT or REJECT

 INFO: There were 2 changes to cidcall.log

 INFO: There were 224 changes to cidcall.log.1

 INFO: There were 14 cidcall.log.2

 INFO: There were 18 cidcall.log.3

 INFO: There were 24 cidcall.log.4

 INFO: There were 16 cidcall.log.5

 INFO:

 INFO: (NAMEDEP) Changed "John on Cell" to \

 "John's iPhone" for 4075551212 298 times

 410 End of data

WRK: REJECT LOGS

 rm cidcall.log.*.new

 rm cidcall.log.new

Feature Set 4: Acknowledgment Support

You might want to implement this feature set if the network connection
between a client/gateway and the server suffers from reliability issues.

A client/gateway can ask the server to ACK:(nowledge) all lines sent to it. Normally only used when a smartphone is involved. Requires a Feature
Set 2 server.

A client/gateway can also ask the server to respond to a periodic
REQ: YO request to make sure the communication to the server is still there.

SERVER IMPLEMENTATION

If you want to implement a server to take advantage of acknowledgments:

implement a Feature Set 1 server

implement a Feature Set 2 server if a REQ: ACK is required

only send ACK: lines in response to the specific
client/gateway connection that sent the REQ: ACK or REQ: YO

Server Output Lines

ACK: <line to be sent>

where <line to be sent> is an exact copy of what the server just received

An ACK: is sent under two different scenarios:

Whenever the server receives a REQ: ACK line and also all subsequent lines received for the duration of the connection.
Requires
a Feature Set 2 server.

ACK: REQ: ACK

ACK: CALL: ###DATE...

ACK: NOT: <message>

ACK: CALLINFO: ###END ...

Every time the server receives a REQ: YO line.

ACK: REQ: YO

GATEWAY IMPLEMENTATION

implement a Feature Set 2 gateway

if desired, send REQ: ACK to the server to enable acknowledgment of all lines

gateways are allowed to send a REQ: YO to the server for an ACK: REQ: YO response. The response indicates the server is still
available. It should be sent only after at least 15 minutes of no server activity.

Gateway-to-Server

REQ: ACK

Enables the server to generate an ACK: on each subsequent line sent to the server, including the REQ: ACK request. This only needs to be
sent once by the gateway's connection; it remains enabled until the gateway disconnects.

REQ: ACK

REQ: YO

A request to the server for an ACK: to make sure communication with the server is active.

REQ: YO

CLIENT IMPLEMENTATION

implement a Feature Set 1 client

implement a Feature Set 2 client if a REQ: ACK is required

clients are allowed to send a REQ: YO to the server for an ACK: REQ: YO response. The response indicates the server is still available.
It should be sent only after at least 15 minutes of no server activity.

Client-to-Server

REQ: ACK

Enables the server to generate an ACK: on each subsequent line sent to the server, including the REQ: ACK request. This only needs to be
sent once by the client's connection; it remains enabled until the client disconnects.

REQ: ACK

REQ: YO

A request to the server for an ACK: to make sure communication with the server is active.

REQ: YO

Feature Set 5: Relay Job Support (new in API 1.4)

Relay Jobs allow clients and gateways to query and control other clients and gateways. Compare this with Feature Set 3 Client Jobs where clients
query and/or control only the server, e.g., adding new numbers to ncidd.blacklist.

RELAY JOB OVERVIEW

Relay Jobs were originally conceived as a way for NCIDpop to ask a user
for an SMS phone number and an SMS text message to be sent using
NCID Android running on a smartphone. With the NOT: line type, smartphones could already forward SMS messages to connected NCID clients --

one
direction only. Relay Jobs allow NCID clients like NCIDpop to "remotely"
create new SMS messages for sending via smartphones.
(See
Appendix E: SMS Relay Job sequence diagram.)

After the initial SMS design, the Relay Job concept was expanded to allow querying the status of certain smartphone properties (e.g., battery
level) and to control the smartphone's behavior in limited
ways (e.g., dial a phone number).

With the final design described below, Relay Jobs are no longer limited
to querying/controlling smartphones; the Relay Job specification is now
generic enough that other clients and gateways can be queried/controlled.

A Relay Job consists of three primary pieces of information:

a Relay Job Origin (RJO) device (or client/gateway) name

a Relay Job Target (RJT) device (or client/gateway) name

a command to be executed (arguments are included if required)

RJO and RJT device names should be unique (this is not strictly enforced)
and are normally configured manually by the user within the NCID client
or gateway program. (Quite often the RJT name will be the same value used
to populate the LINE*<lineid> field pair for non-RLY: line types.) If

there is no way for the user to set the device name, or it's deemed unnecessary, then the default device name is usually the output of the
hostname program on Unix/Linux, or the Computer name under Windows. When the NCID server sends the Relay Job to all listening clients and

gateways, each client/gateway compares its device name against
the RJT. A special target of '@all' is allowed and, assuming the target can
execute the Relay Job command, any and all appropriate targets will carry it out.

What queries/actions are allowed is entirely up to the capability of
the RJT. (For example, a wifi-only tablet would not be able to dial a phone
number but its battery level could probably be queried.) For this
reason, this API document can only suggest possible commands that could be

used; the NCID server doesn't care what they are.

If a target is not enabled for Relay Jobs, or if it is enabled but
is unable to execute the Relay Job command (e.g., the wifi-only tablet
can't dial a
number), then the target will simply ignore the Relay Job.

The NCID server's only role is to be the middle man and "relay" these
jobs from an RJO to all listening clients and gateways.

SERVER IMPLEMENTATION

If you want to implement a server to handle Relay Jobs:

implement a Feature Set 1 server

if a client or gateway sends a line where the first field pair is prefixed with ###, replace ###
with *** and send it to all connected
clients and gateways

if the server is configured to send the call log, change the RLY: label to be RLYLOG:

RELAY JOB ORIGIN (RJO) IMPLEMENTATION

An RJO is typically considered to be a client and not a gateway because clients interact with a user. However, gateways can also be RJOs.

If you want to implement a client or gateway to initiate Relay Jobs:

when connecting to the server, be sure the server indicates it is
enabled for Feature Set 5

ignore (do not display) RLY: lines where
the RJO matches itself

ignore (do not display) RLYLOG: lines

provide a way for the user to specify the RJT, or '@all', that is to execute the Relay Job

provide a way for the user to type in, or select from a list, a
CMD to be sent to the target, along with any required arguments

RJO Line Type Definition

RLY:

A Relay Job sent to the server.

RLY: <message> ###DATE*<date>*TIME*<time>*TO*<target>*FROM*<origin>*CMD*<command>*

RLY: <message> ###DATE*<date>*TIME*<time>*TO*<target>*FROM*<origin>*CMD*<command>*ARG1*<arg1>*

RLY: <message> ###DATE*<date>*TIME*<time>*TO*<target>*FROM*<origin>*CMD*<command>*ARG1*<arg1>*ARG2*

<arg2>*...

<message> is optional and depends on <command>.

The RLY: line has the following field pairs (field label and field data):

<label>*<data>* Description

start of the information part of the message being sent to the server

DATE*date* where date is mmddyyyy or ddmmyyyy, m = month, d = day, y = year

TIME*time* where time is hhmm in 24-hour format, h = hour, m = minute

TO*target* where target is a case-sensitive smartphone device identifier (normally a <lineid>) or '@all'

FROM*origin* where origin is a case-sensitive smartphone device identifier (normally a <lineid>)

CMD*command* where command is a case-sensitive command to send to a smartphone

ARG1*arg1* optional field pair where arg1 is an argument value for the above command

ARG2*arg2* optional field pair where arg2 is an argument value for the above command

... ...

ARGx*argx* optional field pair where argx is an argument value for the above command

The following are some suggestions for <command>:

<command> <arg1> Description

BATTERY reply with the battery level in a NOT:

LOCATION reply with the GPS location in a NOT:

PLACECALL <phone number> remotely dial <phone number>

RINGTONE play the default ringtone to help find the smartphone, or just to annoy someone

TEXTMSG <phone number> send an SMS <message> to <phone number>

RELAY JOB TARGET (RJT) IMPLEMENTATION

An RJT is typically considered to be a gateway and not a client because
gateways usually do not interact with a user. However, clients can also
be RJTs.

If you want to implement a client or gateway to take action on Relay Jobs:

provide a way for the user to specify the RJT

when connecting to the server, be sure the server indicates it is
enabled for Feature Set 5

ignore (do not display) RLY: lines where
the RJO matches itself

ignore (do not display) RLYLOG: lines

ignore (do not display) RLY: lines where
the RJT is not '@all' and the RJT does not match itself

execute the job's command and use MSG: or
NOT: line types to send the result back to
the server

RJT Line Type Definition

RLY:

A Relay Job sent to all listening clients and gateways. It is the same
as the RJO Line Type Definition except instead of
before the first field
pair, the server changes it to ***.

RELAY JOB EXAMPLES

The following examples are based on a setup with four devices:

Windows desktop named "Winny" running NCIDpop

Android wi-fi only tablet named "Tabby" running NCID Android

Android smartphone named "Smarty" running NCID Android

Raspberry Pi named "CrayWannaBe" running NCID server

CMD*BATTERY*

Request Tabby's battery level:

Program Device Entry in ncidd.log

NCIDpop Winny
RLY: ###DATE*09052016*TIME*0111*TO*Tabby

*FROM*Winny*CMD*BATTERY*

ncidd CrayWannaBe
RLY: ***DATE*09052016*TIME*0111*TO*Tabby

*FROM*Winny*CMD*BATTERY*

NCID Android Tabby
NOT: Battery is 100.0% (Full) ###DATE*09052016

*TIME*0111*NAME*-*NMBR*-*LINE*Tabby*MTYPE*IN*

ncidd CrayWannaBe
NOT: Battery is 100.0% (Full) ***DATE*09052016

*TIME*0111*NAME*-*NMBR*-*LINE*Tabby*MTYPE*IN*

Request battery level from all NCID Android devices:

Program Device Entry in ncidd.log

NCIDpop Winny
RLY: ###DATE*09052016*TIME*0111*TO*@all

*FROM*Winny*CMD*BATTERY*

ncidd CrayWannaBe
RLY: ***DATE*09052016*TIME*0111*TO*@all

*FROM*Winny*CMD*BATTERY*

NCID Android Tabby
NOT: Battery is 100.0% (Full) ###DATE*09052016

*TIME*0111*NAME*-*NMBR*-*LINE*Tabby*MTYPE*IN*

ncidd CrayWannaBe
NOT: Battery is 100.0% (Full) ***DATE*09052016

*TIME*0111*NAME*-*NMBR*-*LINE*Tabby*MTYPE*IN*

NCID Android Smarty
NOT: Battery is 84.0% (Discharging) ###DATE

*09052016*TIME*0111*NAME*-*NMBR*-*LINE*Smarty*MTYPE*IN*

ncidd CrayWannaBe
NOT: Battery is 84.0% (Discharging) ***DATE

*09052016*TIME*0111*NAME*-*NMBR*-*LINE*Smarty*MTYPE*IN*

CMD*LOCATION*

Request Smarty's GPS coordinates:

Program Device Entry in ncidd.log

NCIDpop Winny
RLY: ###DATE*09052016*TIME*1330*TO*Smarty

*FROM*Winny*CMD*LOCATION*

ncidd CrayWannaBe
RLY: ***DATE*09052016*TIME*1330*TO*Smarty

*FROM*Winny*CMD*LOCATION*

NCID
Android

Smarty
NOT: Location is: latitude 45.57175012, longitude -122.67063299
###DATE*09052016*TIME*1330*NAME*-*NMBR*-*LINE*Smarty*MTYPE*IN*

ncidd CrayWannaBe
NOT: Location is: latitude 45.57175012, longitude -122.67063299
***DATE*09052016*TIME*1330*NAME*-*NMBR*-*LINE*Smarty*MTYPE*IN*

CMD*PLACECALL*

Remotely dial a number on Smarty:

Program Device Entry in ncidd.log

NCIDpop Winny
RLY: ###DATE*09052016*TIME*1751*TO*Smarty

*FROM*Winny*CMD*PLACECALL*ARG1

4075557777

ncidd CrayWannaBe
RLY: ***DATE*09052016*TIME*1751*TO*Smarty

*FROM*Winny*CMD*PLACECALL*ARG1

4075557777

NCID Android Smarty
CALL: ###DATE09061751...CALLOUT...LINESmarty

...NMBR4075557777...NAMEJOHN ON CELL+++

ncidd CrayWannaBe
OUT: *DATE*09062016*TIME*1751*LINE*Smarty

*NMBR*4075557777*MESG*NONE*NAME

JOHN ON CELL

NCID Android Smarty
CALLINFO: ###BYE...DATE09061751

...SCALL09/06/2016 17:51:12...ECALL09/06/2016 17:58:09...CALLOUT...LINESmarty

...NMBR4075557777...NAMEJOHN ON CELL+++

ncidd CrayWannaBe

END: *HTYPE*BYE*DATE*09062016*TIME

*1751*SCALL*09/06/2016 17:51:12*ECALL

*09/06/2016 17:58:09*CTYPE*OUT*LINE*Smarty

*NMBR*4075557777*NAME*JOHN ON CELL*

CMD*RINGTONE*

Remotely play Smarty's default ringtone:

Program Device Entry in ncidd.log

NCIDpop Winny
RLY: ###DATE*09052016*TIME*1241*TO*Smarty

*FROM*Winny*CMD*RINGTONE*

ncidd CrayWannaBe
RLY: ***DATE*09052016*TIME*1241*TO*Smarty

*FROM*Winny*CMD*RINGTONE*

CMD*TEXTMSG*

Use NCIDpop to remotely send an SMS from Smarty:

Program Device Entry in ncidd.log

NCIDpop Winny

RLY: Are you coming over to see the surprise eclipse

tonight?###DATE*09052016*TIME*2138*TO

*Smarty*FROM*Winny*CMD*TEXTMSG*ARG1

4075557777

ncidd CrayWannaBe

RLY: Are you coming over to see the surprise eclipse

tonight?***DATE*09052016*TIME*2138*TO

*Smarty*FROM*Winny*CMD*TEXTMSG*ARG1

4075557777

NCID Android Smarty

NOT:Are you coming over to see the surprise eclipse

tonight?###DATE*09062016*TIME*2138*NAME

*JOHN ON CELL*NMBR*14075557777*LINE*Smarty

*MTYPE*OUT*

ncidd CrayWannaBe

NOT:Are you coming over to see the surprise eclipse

tonight?***DATE*09062016*TIME*2138*NAME

*JOHN ON CELL*NMBR*14075557777*LINE*Smarty

*MTYPE*OUT*

Sending a Text Message

The server accepts a single line text message from a client and broadcasts it to all connected clients. All messages must begin with the MSG:
label.

Other programs such as netcat can be used to send a message. Telnet is not recommended. If netcat is used, please note there are different
versions with different options.

This shell script example creates a 10 minute food timer. The -w1 is a one second idle timeout to wait before disconnect:

sleep 600; echo "MSG: Food Ready" | nc -w1 localhost 3333 > /dev/null

(New in API 1.5) At connect, you can send zero or more HELLO: lines
prior to a MSG: line. In particular, sending a HELLO: CMD: no_log line can
improve performance
because it forces the server not to send the call log before processing the
MSG:.

sleep 600; \

echo -e "HELLO: IDENT: client food timer 1.1\nHELLO: \

 CMD: no_log\nMSG: Food Ready" | nc -w1 localhost 3333 > /dev/null

Emulation Programs and Test Files

The test directory in the NCID source contains emulation programs for the server, client, SIP gateway and modem. There are also test files for the
server and a client logfile used for screenshots in the source test directory. The README-test file explains how to use the emulation programs

and test files.

Appendix A: Quick Reference List of all {CALLTYPE} and {MSGTYPE} line types

For development purposes, here are non-clickable, copy-and-paste friendly versions all on one line. These are the types likely to be used when
creating new client output modules.

No colons:

Space delimited:

BLK CID HUP MSG MWI NOT OUT PID PUT RID WID

Comma delimited:

BLK,CID,HUP,MSG,MWI,NOT,OUT,PID,PUT,RID,WID

Comma and space delimited:

BLK, CID, HUP, MSG, MWI, NOT, OUT, PID, PUT, RID, WID

Pipe delimited:

BLK|CID|HUP|MSG|MWI|NOT|OUT|PID|PUT|RID|WID

Regex-ready, pipe delimited:

^BLK|^CID|^HUP|^MSG|^MWI|^NOT|^OUT|^PID|^PUT|^RID|^WID

With colons:

Space delimited:

BLK: CID: HUP: MSG: MWI: NOT: OUT: PID: PUT: RID: WID:

Comma delimited:

BLK:,CID:,HUP:,MSG:,MWI:,NOT:,OUT:,PID:,PUT:,RID:,WID:

Comma and space delimited:

BLK:, CID:, HUP:, MSG:, MWI:, NOT:, OUT:, PID:, PUT:, RID:, WID:

Pipe delimited:

BLK:|CID:|HUP:|MSG:|MWI:|NOT:|OUT:|PID:|PUT:|RID:|WID:

Regex-ready, pipe delimited:

^BLK:|^CID:|^HUP:|^MSG:|^MWI:|^NOT:|^OUT:|^PID:|^PUT:|^RID:|^WID:

Appendix B: Index to all line type definitions

Table column Description

FS Applicable Feature Set

History? Yes if saved to call history log

Modules? Yes if sent to client output modules

Forwarded? Line type that is sent to forwarding gateway

Arranged alphabetically.

Click on the Line type XXX to be taken to its definition.

Not included below are XXXLOG: line types. If the History? column is Yes, then when the server sends the call history log, it replaces the XXX: label
with XXXLOG:. Clients parse XXXLOG:
as if they were XXX:.

Line type FS History? Modules? Forwarded?

\n (newline) 1

200 1

210 1

250 - 254 1

300 1

400 3

401 3

402 3

403 3

410 3

411 3

ACK: 4

BLK: 2 Yes Yes +BLK:

CALL: 2

CALLINFO: 2

CID: 1 Yes Yes +CID:

CIDINFO: 1 Yes +CIDINFO:

END: 2 Yes +END:

GOODBYE (client) 1

GOODBYE (gateway) 2

HELLO: (client) 1

HELLO: (gateway) 2

HUP: 1 Yes Yes +HUP:

INFO: 3

LOG: 1

MSG: (client output) 1

MSG: (gateway alerts) 2 Yes Yes +MSG:

MSG: (gateway output) 2

MSG: (server alerts) 1 Yes Yes +MSG:

MSG: (server output) 1 Yes Yes +MSG:

MWI: 2 Yes Yes +MWI:

NOT: (gateway) 2 Yes Yes +NOT:

NOT: (server) 2 Yes Yes +NOT:

OPT: 1

OUT: 2 Yes Yes +OUT:

PID: 2 Yes Yes +PID:

PUT: 2 Yes Yes +PUT:

REQ: 3

REQ: ACK (client) 4

REQ: ACK (gateway) 4

REQ: DIAL or DIAL_ABORT 3

REQ: INFO 3

REQ: PAUSE 3

REQ: RELOAD 3

REQ: REREAD 3

REQ: UPDATE 3

REQ: UPDATES 3

REQ: YO (client) 4

REQ: YO (gateway) 4

REQ: alias 3

REQ: black 3

REQ: white 3

RESP: 3

RID: 2 Yes Yes +RID:

RPLY: 3

RLY: (Relay Job Origin (RJO)) 5 Yes +RLY:

RLY: (Relay Job Target (RJT)) 5 Yes +RLY:

WID: 2 Yes Yes +WID:

WRK: 3

WRK: ACCEPT LOG 3

WRK: ACCEPT LOGS 3

WRK: REJECT LOG 3

WRK: REJECT LOGS 3

Appendix C: Quick Reference List of all server configuration settings

Arranged alphabetically by setting name.

File Name Setting name Brief description

ncidd.conf addedmodems a list of file names for multiple modems

ncidd.conf announce file name of raw modem device (.rmd) file to be played

ncidd.conf audiofmt "AT" command string to set voice modem audio format

ncidd.conf blacklist blacklist file name

ncidd.conf cidalias alias file name

ncidd.conf cidinput select Caller ID source

ncidd.conf cidlog log file name for call activity

ncidd.conf cidlogmax maximum size in bytes of cidlog

ncidd.conf cidnoname
enable/disable detection of Caller ID name from Telco (Removed in API 1.9)(Restored in API
1.13)

ncidd.conf country
two-letter uppercase Country Code where the server is running; used when formatting original
NMBR field pair to become FNMBR (new in API 1.11)

ncidd.conf datalog log file name for raw data received from modems and gateways

ncidd.conf gencid enable/disable reporting of generic Caller ID

ncidd.conf hangup disable/select hangup mode

ncidd.conf hupmode Hangup Extension: disable/select hangup mode

ncidd.conf hupname Hangup Extension: file name of external script/program

ncidd.conf huprmd Hangup Extension: file name of raw modem device (.rmd) file to be played

ncidd.conf ifaddr restrict port connections

ncidd.conf ignore1 enable/disable leading 1 in US/Canada

ncidd.conf initcid "AT" command string to enable modem's Caller ID

ncidd.conf initstr "AT" command string to initialize modem

ncidd.conf language
two-letter lowercase Language Code where the server is running; used when populating the
LOCA field pair (new in API 1.11)

ncidd.conf lineid phone line identifier

ncidd.conf lockfile full path to modem/serial device lock file

ncidd.conf nanp_format phone number format for NANP countries (new in API 1.11)

ncidd.conf pickup enable/disable sending of "AT" command string to pickup phone line

ncidd.conf pidfile full path to server's process id file, prevents multiple instances

ncidd.conf port server's listening TCP/IP port number

ncidd.conf regex
enable/disable POSIX or Perl Compatible regular expressions for alias, blacklist and whitelist
files

ncidd.conf send cidinfo enable/disable sending of ring info to clients

ncidd.conf send cidlog enable/disable sending of call log to clients

ncidd.conf ttyclocal enable/disable hardware flow control for modem or serial device

ncidd.conf ttyport modem or serial device port name

ncidd.conf ttyspeed modem or serial device communication speed

https://www.iso.org/obp/ui/#search
https://www.loc.gov/standards/iso639-2/php/English_list.php

ncidd.conf verbose verbose level

ncidd.conf whitelist blacklist file name

Appendix D: More info about modem MESG hexadecimal characters

When a modem that is configured to output ASCII Plain Format Caller ID instead receives something in the raw SDMF parameter data or the raw
MDMF parameter data that it does not understand, it will generate a MESG line of the unknown parameter block as a series of hexadecimal

characters using ASCII text. This does not mean an error was detected, rather it is additional call detail provided by the telco that the modem
doesn't know how to decode.

The NMBR label may be DDN_NMBR (Dialable Directory Number) instead,
depending on the country.

Example of an incoming call generated by British Telecom in the UK:

RING

MESG = 110101

DATE = 0511

TIME = 1852

NAME = JOHN DOE

NMBR = 4075550000 or DDN_NMBR = 4075550000

RING

The hexadecimal characters can be interpreted by going to the British Telecom document index,
accepting the copyright agreement and then
selecting Suppliers' Information Notes (SIN) #227.
Page 22 of 34 has the following info (field names relabeled for clarity):

Field name Hex byte Meaning

Parameter Code 11 Call type

Parameter Length 01 1 byte

Qualifier 01 Voice call

This indicates a normal call so the MESG line can be safely ignored.

Example of a call from Bell Canada:

RING

DATE = 0511

TIME = 1852

NAME = JOHN DOE

NMBR = 4075550000 or DDN_NMBR = 4075550000

MESG = 06014C

RING

The hexadecimal characters can be interpreted using page 15 of 21 of the Bell Interface Document (BID), BID-0001 (on the Wayback Machine):

Field name Hex byte Meaning

Parameter Code 06 Call type

Parameter Length 01 1 byte

Qualifier 4C ("L") Long distance call

It is unclear what determines the sequence that the MESG line is
emitted by the modem. For British Telecom, modems seem to generate MESG
before DATE and for Bell Canada telcos, modems seem to generate it after NMBR/DDN_NMBR.

Additional info in this UK Telecom Google Group post.

http://www.sinet.bt.com/sinet/SINs/index.htm
http://www.sinet.bt.com/sinet/SINs/pdf/227v3p7.pdf
https://web.archive.org/web/20080908040823/https://www.bell.cdn-telco.com/bid/BID-0001Multiple.pdf
https://groups.google.com/forum/#!msg/uk.telecom/GDX2MEfhCJE/pFS-ioIJJroJ

Appendix E: SMS Relay Job sequence diagram (new in API 1.4)

Below is a sequence diagram showing how NCIDpop relays SMS to NCID Android.

The first two sequences show the use of NOT: only. The third sequence shows how RLY:
was added to allow NCIDpop to "remotely" send SMS
messages.

Appendix F: Index to all field pair definitions

Arranged alphabetically by field label.

Click on a link to be taken to its definition.

Field Label Description

ARGx RLY: CMD arguments

CARI
phone number's carrier name

(new in API 1.11)

CMD RLY: command

CTRY
phone number's two-letter uppercase country code

(new in API 1.11)

CTYPE END: type of call (used for end-of-call accounting)

DATE date

ECALL END: date/time the call ends (used for end-of-call accounting)

FNMBR formatted phone number (new in API 1.11)

FROM RLY: sending device identifier

HTYPE END: reason the call ended (used for end-of-call accounting)

LINE phone line identifier

LOCA phone number's location within the country (new in API 1.11)

MESG text message

MODE hangup mode for server extension

MTYPE text message type

NAME caller's name

NMBR phone number

NTYPE phone number's device type (new in API 1.11)

PCALL END: date/time the call is picked up (used for end-of-call accounting)

RING CIDINFO: ring count and status

SCALL END: date/time the call starts (used for end-of-call accounting)

TIME time

TO RLY: receiving device identifier

TYPE line type for output modules

Appendix G: Field pair definitions

Arranged alphabetically.

ARGx

where x is an incrementing integer starting at one; there is no defined maximum

used exclusively for the RLY: line type

a string of characters representing a single argument for a CMD field pair sent to a device running NCID Android

there can be zero or more ARGx field pairs for a single RLY: line; specify as many as needed by a CMD's field pair

CARI (new in API 1.11)

a string of characters that indicates the phone number's carrier name (telco) of the Caller ID

provided by the Google libphonenumber project integration

can include embedded spaces (do not surround with quotes)

can include punctuation marks

no defined length limit

if there is no carrier, it should not be left blank (although this is not strictly enforced and you may get unpredictable results), but instead
should contain NONE or a dash ("-")

There is an important caveat to be aware of: number portability
(moving a number from one carrier to another). From the Google
libphonenumber project FAQ: "Not all regions support mobile number portability. For those that don't, we return the carrier when

available. For those that do, we return the original carrier for the supplied number."

CMD

used exclusively for the RLY: line type

a string of characters representing a single command to a device running NCID Android

currently supported commands are: BATTERY, LOCATION, PLACECALL,
RINGTONE, TEXTMSG

CTRY (new in API 1.11)

caller's two-letter uppercase country code, or, for outbound calls, can be the country code where the NCID server is located

provided by the Google libphonenumber project integration

can be ZZ if the country cannot be determined from the incoming Caller ID number

can be PARSING_ERROR if the Caller ID number is invalid

CTYPE

used exclusively for the END: call accounting line type, it indicates the direction of the call (inbound or outbound)

can be one of: IN, OUT, PID, PUT

DATE

The general rule of thumb is that dates related to call data will
already be passed from the telco to NCID in the correct format for
the
country where NCID is running -- month/day or day/month -- as provided by the modem or other device. They will in turn be stored in

the call log in the same format.

https://github.com/google/libphonenumber/blob/master/FAQ.md#since-its-possible-to-change-the-carrier-for-a-phone-number-how-is-the-data-kept-up-to-date

There are three exceptions:

If NCID does not detect a DATE field pair it will create one from
the current date. Be aware that such dates will always be in the
format month/day regardless of the country where NCID is running.

Sometimes the DATE will be a date and time "combo" field where the date is only four digits (mmdd or ddmm) and the time is the
normal four (hhmm) digits as described in the definition for TIME.
The four digit date follows the general rule of thumb above.

(New in API 1.4) The field pair contents of RLY: line types are NOT checked at all and are expected to include the DATE field pair.

ECALL

used exclusively for the END: call accounting line type, it indicates the date and time for the end of
a call

the date will always be in the format month/day regardless of the country where NCID is running

FNMBR (new in API 1.11)

the result of formatting NMBR using the Google libphonenumber project integration

can be PARSING_ERROR if the Caller ID number is invalid

FROM

used exclusively for the RLY: line type

a string of characters to identify the sending NCID Android device (normally the same as the device's LINE)

HTYPE

used exclusively for the END: call accounting line type, it indicates how the call ended: BYE means a normal hangup, CANCEL means
ring-no-answer

LINE

Also referred to as <lineid> in this API, it is a string of characters that identifies the thing that is submitting data to the NCID
server. If
the data is a call from a modem, smartphone or gateway then <lineid> normally identifies the originating telephone line. If the data is a

text message, it could be a device identifier.

can include embedded spaces (do not surround with quotes)

usually does not have punctuation marks

as a general guideline it is suggested that this be no more than six characters but this is not strictly enforced

you can apply aliases to LINE data

if there is no <lineid>, it should not be left blank (although this is not strictly enforced and you may get unpredictable results), but
instead should contain NO-LINE or a dash ("-").

LOCA (new in API 1.11)

a string of characters that indicates the location or area (state/province/region/city) within the country

provided by the Google libphonenumber project integration

MESG

This field pair is used in two different cases: 1) detecting and reporting exceptions in the SMDF/MDMF data streams from modem or modem-
like devices, and 2) a simple text message to be passed from a device or gateway to connected clients.

Case 1: SDMF/MDMF exceptions from a modem or modem-like device

a string of hexadecimal characters that represent raw Caller ID data bytes that the modem does not understand
(see Appendix D:
More info about modem MESG hexadecimal characters)

there may be multiple MESG lines emitted, one line for each exception

used with line types assigned as {CALLTYPE} in the Categories table

the field pair MTYPE is not used

(Removed in API 1.8) NCID does not currently interpret the MESG code in any way but
simply captures it and sends it on to listening
clients

(New in API 1.8) NCID will decode the hexadecimal characters in situations where it has useful info. For example, the telco may
transmit a
simple status indicator as to whether there is a voicemail message
waiting, or a count of the number of voicemail

messages waiting.

no defined length limit

if there are no hexadecimal characters, it should not be left blank when populating the field pair (although this is not strictly
enforced and you may get unpredictable results), but instead should contain NONE
or a dash ("-")

Case 2: A simple text message

a string of characters that can contain anything, including one or more embedded asterisks

it is not necessary to use double quotes to surround any part of
the text; double quotes are treated like any other punctuation
character

used with line types assigned as {MSGTYPE} in the Categories table

if the data stream does not explicitly have the MESG field label, it is assumed that the message text is all of the free form
text
appearing after the {MSGTYPE} line type and before the first field label.

the field pair MTYPE is expected

no defined length limit; note that smartphone SMS text messages can be several hundred bytes in length

MODE

an integer corresponding to the ncidd.conf::hupmode server configuration setting

used internally by the NCID server and
the Optional Server Hangup Extension

MTYPE

a string of characters that indicates the type of data contained in the MESG field pair

the server will default an empty/missing MTYPE as USER

can be IN or OUT to indicate the direction relative to LINE

can be SYS indicating a server generated message (e.g., modem disconnected)

can be - or NONE

NAME

a string of characters that indicates the caller's name from a modem, gateway or smartphone, or a name alias

can include embedded spaces (do not surround with quotes)

can include punctuation marks

can be one of the special names OUT-OF-AREA, ANONYMOUS and PRIVATE

if there is no NAME, it should not be left blank (although this is not strictly enforced and you may get unpredictable results), but instead
should contain NO NAME or a dash ("-")

NAME should not exceed 50 characters and in particular the NCID server enforces an alias maximum length of 50.

can be UNKNOWN for smartphone SMS messages

NMBR

a string of characters that indicates the phone number from a modem, gateway or smartphone, or a number alias

usually does not have embedded spaces

if punctuation marks are present, it is usually a dash ("-")

can be one of the special names OUT-OF-AREA, ANONYMOUS and PRIVATE

if there is no number, it should not be left blank (although this is not strictly enforced and you may get unpredictable results), but
instead should contain NO-NUMBER or a dash ("-"). The general size limit in the telephone industry is 15 characters or less.

NTYPE (new in API 1.11)

a string of characters that indicates the phone number's device type ("fixed" for a landline, mobile, pager, short public number, etc.)

provided by the Google libphonenumber project integration

typical values: CELL, FIX/CELL, T-FREE

PCALL (new in API 1.13)

used exclusively for the END: call accounting line type, it indicates the date and time for the start of a call

the date will always be in the format month/day regardless of the country where NCID is running

RING

a signed integer representing the ring count or status

used exclusively for the CIDINFO: line type

SCALL

used exclusively for the END: call accounting line type, it indicates the date and time for the start of a call

the date will always be in the format month/day regardless of the country where NCID is running

TIME

Most TIME fields are expected to be in military style 24-hour format
(hours 0-23). Clients have the option of converting to 12-hour
AM/PM
format.

If NCID does not detect a TIME field pair it will create one from
the current time.

(New in API 1.4) The field pair contents of RLY:
line types are NOT checked at all and are expected to include the TIME field pair.

NCID does not care or know anything about time zones.

TO

used exclusively for the RLY: line type

a string of characters to identify the receiving NCID Android device (normally the same as the device's LINE)

can be @all

TYPE

used internally by the server when passing data to an output module

a string of characters corresponding to a {CALLTYPE} or {MSGTYPE} as seen in the Categories table

will not have a trailing colon

API Version Change History

As new features are added they are marked (New in API ?.?)

As features are removed, they are marked (Removed in API ?.?)

The API version number is represented by ?.?

Release Summary

API Version NCID Version Feature Sets

1.13 1.14 1 2 3 4 5

1.12 1.13 1 2 3 4 5

1.11 1.12 1 2 3 4 5

1.10 1.11 1 2 3 4 5

1.9 *1.10 1 2 3 4 5

1.8 1.9 1 2 3 4 5

1.7 1.8 1 2 3 4 5

1.6 1.7 1 2 3 4 5

1.5 1.6 1 2 3 4 5

1.4 1.5 1 2 3 4 5

1.3 1.4 1 2 3 4

1.2 1.3 1 2 3 4

1.1 1.1 1 2 3 4

1.0 1.0 1 2 3 4

*All programs in the released NCID version 1.10 incorrectly report API version 1.8.
Despite this cosmetic issue, all programs do conform to
API version 1.9 as indicated
above.

Version 1.13

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.14.

Appendix C: Quick Reference List of all server configuration settings

Restored ncidd.conf::cidnoname to handle unreliable NAME data.

Appendix F: Index to all field pair definitions

Added PCALL field pairs

Appendix G: Field pair definitions

Added PCALL field pairs

Before You Begin

GUIDELINES FOR CALCULATING CALL DURATION

Added PCALL fields and updated section

Version 1.12

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.13.

Feature Set 3: Client Job Support

Client Job Examples

Added REQ: PAUSE <minutes>

Client-to-Server

Added REQ: PAUSE <minutes>

updated INFO lines for alias, black and white

Before You Begin

GUIDELINES FOR CALCULATING CALL DURATION

New

Version 1.11

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.12.

Google libphonenumber project integration

The NCID server now uses the Google libphonenumber project integration to automatically format phone numbers by country.
Clients no
longer need to be configured to do so.

Before you begin

ABOUT LINE TYPES AND FIELD PAIRS

Added field pairs to the Frequently Used table: CARI, CTRY, FNMBR, LOCA, NTYPE

Call/Message Line Types, Categories and Structure

{CALLTYPE} CATEGORY STRUCTURE

Added field pairs: CARI, CTRY, FNMBR, LOCA, NTYPE

Call/Message Line Types, Categories and Structure

{MSGTYPE} CATEGORY STRUCTURE -> Server Output Lines

Added field pairs: CARI, CTRY, FNMBR, LOCA, NTYPE

Feature Set 1: Modem and Device Support

Server Implementation -> Server Output Lines

Added OPT: country

Client Implementation -> Optional Client-to-Module

Added field pairs: CARI, CTRY, FNMBR, LOCA, NTYPE

Added SYS and USER to MTYPE

Appendix C: Quick Reference List of all server configuration settings

Added ncidd.conf::country, ncidd.conf::language and ncidd.conf::nanp_format for the Google libphonenumber project
integration

Appendix F: Index to all field pair definitions

Added field pairs: CARI, CTRY, FNMBR, LOCA, NTYPE

Appendix G: Field pair definitions

Added field pairs: CARI, CTRY, FNMBR, LOCA, NTYPE

Version 1.10

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.11.

Removed in API 1.11

The following reference to 254 Start of call log was inadvertently
attributed as a change to API 1.10 instead of being attributed to the
Documentation Change History for April 26, 2019. This effectively means API 1.10 had no code-level changes at all.

Feature Set 1: Modem and Device Support

Server Implementation

Added 254 Start of call log line.

Version 1.9

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.10.

Feature Set 1: Modem and Device Support

Server Implementation

Changed description of hangup and when CID: line is sent.

Server Output Lines

Added "-4 = (modem) automatic hangup complete" to the CIDINFO table.

Appendix C: Quick Reference List of all server configuration settings

Removed ncidd.conf::cidnoname because it is no longer used.

Version 1.8

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.9.

Before you begin

ABOUT CONFIGURATION OPTIONS FOR SERVER IMPLEMENTATIONS

Added XDMF Gateway settings line to the table

GENERAL NOTES ON NAME, NMBR, LINE AND MESG FIELD DATA

Updated MESG to indicate the server will now decode some of the hexadecimal characters

Feature Set 1: Modem and Device Support

SERVER IMPLEMENTATION

Server Output Lines

Added "-3 = (gateway) BUSY signal for incomplete call" to the CIDINFO table.

Feature Set 2: Gateway Support

SERVER IMPLEMENTATION

Added a CIDINFO: line with BUSY if the ring count is -3.

Added XDMF Input.

Added Holtek HT9032D operation mode.

Version 1.7

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.8.

Changes made throughout for OPT: regex
and ncidd.conf::regex. These now support a dash to accommodate the
new value of
2 (regex-2) for PCRE (Perl Compatible Regular Expressions).
POSIX expressions were already supported but are now designated

by regex-1.

Call/Message Line Types, Categories and Structure (new in API 1.7)

New

Feature Set 1: Modem and Device Support

Server Implementation -> Modem-to-Server

ASCII Hex Format Caller ID (SDMF, MDMF a.k.a. XDMF).

Originally named "Added new support for Unformatted Caller ID (SDMF, MDMF)" in API 1.7 it has been renamed in later
versions.

New

Feature Set 2: Gateway Support

Server Implementation -> Server Output Lines

MWI: added as new line type for Message Waiting Indicator.

PUT: added as new line
type for smartphone outgoing call.

RID: added as new line
type for ringback Caller ID.

Gateway Implementation -> Gateway-to-Server

CALL: added PUT:, MWI:,

Version 1.6

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.7.

Feature Set 1: Modem and Device Support

Server Implementation

Added new GOODBYE line type.

Server Implementation -> Server Output Lines -> OPT: LineIDs:

New

Server Implementation -> Server Output Lines -> RPLY:

New

Server Implementation -> Optional Server Hangup Extension

Hangup extensions can return a hangup reason to the server.

Client Implementation

Revised recommended content for HELLO: IDENT:. Removed unnecessary verbiage stating servers can display these lines.

Added new GOODBYE line type.

Client Implementation -> Client-to-Server -> GOODBYE

New

Client Implementation -> Client-to-Server

Added new HELLO: CMD: send_log command.

Client Implementation -> Optional Client-to-TiVo Display

(Removed in API 1.6)

Optional Server Extensions -> Optional Server Hangup Extension

Added MODE field pair to data passed to Hangup Server Extension.

Data returned to ncidd now includes hupmode.

Feature Set 2: Gateway Support

Gateway Implementation -> Gateway-to-Server -> GOODBYE

New

Feature Set 3: Client Job Support

Overview of Available Client Jobs

Added new REQ: DIAL and REQ: DIAL_ABORT line types.

Client Implementation

Added "dial" to graphical NCID client features.

Client Implementation -> Client-to-Server -> REQ: DIAL|DIAL_ABORT

New

Client Implementation -> Client-to-Server -> Requirements For Dial-a-number Client Job

New

Client Job Examples

Added REQ: DIAL to overview table.

Added REQ: DIAL example.

Appendix B: Index to all line type definitions

Added new REQ: DIAL, REQ: DIAL_ABORT,
GOODBYE and RPLY
line types. Removed unnecessary syntax for REQ: INFO.

Version 1.5

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.6.

Feature Set 1: Modem and Device Support

Server Implementation

Added line type HELLO:.

Client Implementation

Added definition for line type HELLO:.

Feature Set 2: Gateway Support

Gateway Implementation

Added line type HELLO:.

Client Implementation

Added line type HELLO:.

Optional Client-to-Module

Added line type HELLO:.

Version 1.4

General changes

Feature sets supported: 1 2 3 4 5

Released simultaneously with NCID 1.5.

Added definitions for line types +BLK, +CID, +END, +HUP, +MSG, +NOT, +OUT, +PID, +RLY, +WID and +CIDINFO.
These represent
line types from a Forwarding Gateway. They are otherwise the same as the same line types without the leading "+".

Before you begin

General notes on DATE and TIME field data

Added note that RLY: line types will not
be checked for missing DATE and TIME fields because they are expected
to be present.

Feature Set 2: Gateway Support

Forwarding Gateway (Server-to-Server) (new in API 1.4)

New

Feature Set 5: Relay Job Support

New

Appendix A: Quick Reference List of all {CALLTYPE} and {MSGTYPE} line types

Originally named "Quick Reference List of all call type line identifiers" in API 1.4 it has been renamed in later versions.

Added RLY:.

Appendix B: Index to all line type definitions

Added RLY: and RLYLOG:.

Appendix E: SMS Relay Job sequence diagram

New

Version 1.3

General changes

Feature sets supported: 1 2 3 4

Released simultaneously with NCID 1.4

Feature Set 1: Modem and Device Support

Server Implementation -> Server Output Lines

All OPT: lines output by the server are for informational and troubleshooting purposes only. Clients can optionally make use
of them by giving the user a
way to display them. Otherwise, clients are not required to display them, do not need to take

any action on them and can safely ignore them.
See Feature Set 1 OPT: definition and Feature Set 1: Client Implementation
for more information.

Client Implementation

All OPT: lines output by the server are for informational and troubleshooting purposes only. Clients can optionally make use
of them by giving the user a
way to display them. Otherwise, clients are not required to display them, do not need to take

any action on them and can safely ignore them.
See Feature Set 1 OPT: definition and Feature Set 1: Client Implementation
for more information.

Feature Set 2: Gateway Support

Client Implementation

All OPT: lines output by the server are for informational and troubleshooting purposes only. Clients can optionally make use
of them by giving the user a
way to display them. Otherwise, clients are not required to display them, do not need to take

any action on them and can safely ignore them.
See Feature Set 1 OPT: definition and Feature Set 1: Client Implementation
for more information.

Feature Set 3: Client Job Support

Server Implementation

reload the blacklist and whitelist files

(Removed in API 1.3) <strike> if

the **ncidd.conf::hangup** option is being used </strike>

Client Implementation

All OPT: lines output by the server are for informational and troubleshooting purposes only. Clients can optionally make use
of them by giving the user a
way to display them. Otherwise, clients are not required to display them, do not need to take

any action on them and can safely ignore them.
See Feature Set 1 OPT: definition and Feature Set 1: Client Implementation
for more information.

Graphical client description

(Removed in API 1.3) only if the server sends OPT: hangup will the user have
an option to force the server to reload the
blacklist/whitelist files

Version 1.2

General changes

Feature sets supported: 1 2 3 4

Released simultaneously with NCID 1.3

Feature Set 1: Modem and Device Support

Server Implementation -> Server Output Lines

changed:

NONAME to NO NAME

NONUMBER to NO-NUMBER

NOLINE to NO-LINE

Client Implementation

Removed OPT: ignore1 from OPT: section.

Note: In API 1.3, OPT: ignore1 was re-implemented for informational and troubleshooting purposes only.

Feature Set 2: Gateway Support

Server Implementation -> Server Output Lines

changed:

NONAME to NO NAME

NONUMBER to NO-NUMBER

NOLINE to NO-LINE

NOTYPE to -

Version 1.1

General changes

Feature sets supported: 1 2 3 4

Released simultaneously with NCID 1.1

Feature Set 1: Modem and Device Support

Server Implementation -> Optional TCI Device-to-Server

New

Feature Set 3: Client Job Support

Client Implementation -> Client-to-Server

Graphical client description

(Removed in API 1.1) only if the server sends OPT: hangup will the user be
able to edit the blacklist/whitelist entries

Updated the following Client Jobs:

REQ: black add
REQ: black remove

REQ: white add
REQ: white remove

with the following:

(Removed in API 1.1) The server must have
sent and the client must have received,
OPT: hangup to enable this Client Job.

Version 1.0

Feature sets supported: 1 2 3 4

Released simultaneously with NCID 1.0

New

Documentation Change History

April 19, 2022

General changes

Updated API Version 1.11 history to include the missing fields of the END line. Created {ENDTYPE} CATAGORY STRUCTURE
and
moved the updated END line definition there.

August 1, 2021

General changes

Minor changes to doc history dates for April 2019 and October 2018

Minor cosmetic fixes for formatting (e.g., "font color" tags not properly closed)

To prevent confusing markdown parsers that a link is being
referenced instead of optional parameters, some "[" and "]"
brackets were changed to their HTML symbol equivalents [and &rback;.

Do not capitalize the word smartphone unless the surrounding text is in title case.

Always use title case for "Caller ID" (e.g., not "caller ID").

Added note to API Version Change History -> Release Summary that programs in the released NCID
version 1.10 incorrectly
report API version 1.8; it should be reporting API version 1.9.

Updated API Version 1.7 history to rename "Added new support for Unformatted Caller ID (SDMF, MDMF)" to be ASCII Hex
Format Caller ID (SDMF, MDMF a.k.a. XDMF)
and fixed the broken link.

Updated API Version 1.8 history:

The server will now decode some of the MESG hexadecimal characters. This had been inadvertently omitted when API
Version 1.8
was published.

Removed references to Formatted and UnFormatted Caller ID.
These had been inadvertently included but didn't need to be.

Updated API Version 1.9 history to indicate ncidd.conf::cidnoname has been removed. It was inadvertently still listed as an
active setting when API Version 1.9
was published.

Updated API Version 1.10 history to indicate
the reference to 254 Start of call log was intended to be made to the
Documentation Change History for April 26, 2019 instead.

{CALLTYPES} and {MSGTYPES} changed everywhere from plural to singular to match output module scripts and their
configuration files.

Removed the Country Codes section. Prior to NCID 1.12, the client only supported six country formats. Now the server supports
(nearly) all country formats. Old links to the Country Codes section in this document have been replaced by a link to ISO 3166-1

alpha 2 codes.

Removed reference to Country Codes section from Documentation Change History for May 31, 2018.

ABOUT LINE TYPES AND FIELD PAIRS

Renamed "Field Pairs" to "Field Pairs - Overview"

Added table: Field Pairs - Frequently Used

New

Feature Set 1: Modem and Device Support

Server Implementation

Added 254 Start of call log because it was previously undocumented.

https://www.iso.org/obp/ui/#search

Server Implementation -> Modem-to-Server

Renamed "ASCII Format Caller ID" to "ASCII Plain Format Caller ID". Link changed similarly.

Changed "XDMF ASCII Hex Format Caller ID (SDMF, MDMF)" to "ASCII Hex Format Caller ID (SDMF, MDMF a.k.a. XDMF)".

Client Implementation -> Optional Client-to-Module

Changed to use uppercase field pair labels to be consistent with the rest of the document.

Added clickable links to go to the field pair definition.

The field pair table had MESG and MTYPE inadvertently swapped; correct sequence is: line 7 for MTYPE, line 8 for MESG.

Feature Set 2: Gateway Support

Server Implementation -> XDMF input

Renamed "XDMF ASCII Format Caller ID" to "ASCII Hex Format Caller ID (SDMF, MDMF a.k.a. XDMF)".

Feature Set 3: Client Job Support

Server Implementation -> Server Output Lines

Changed line type range 250 - 253 to be 250 - 254.

Client Implementation -> Client-to-Server

Changed line type range 250 - 253 to be 250 - 254.

Appendix A: Quick Reference List of all {CALLTYPE} and {MSGTYPE} line types

Appendix A renamed (again! but slightly different!) from "Copy-and-paste friendly {CALLTYPE} and {MSGTYPE}" to "Quick Reference
List of all {CALLTYPE} and {MSGTYPE} line types".

Appendix B: Index to all line type definitions

Changed line type range 250 - 253 to be 250 - 254.

Appendix D: More info about modem MESG hexadecimal characters

Added link to raw SDMF parameter data

Renamed "ASCII Format Caller ID" to "ASCII Plain Format Caller ID".

Fixed link for ASCII Plain Format Caller ID

Appendix F: Index to all field pair definitions

New

Appendix G: Field pair definitions

New

In prior versions of the API, sections GENERAL NOTES ON NAME, NMBR, LINE AND MESG FIELD DATA and GENERAL NOTES ON
DATE AND TIME FIELD DATA were separate. These are now combined, moved to become a new appendix and have been updated

to include all field pairs not previously documented.

Improved the explanation for how to handle empty <field data>,
and the use of a dash to suppress showing anything. This has
been moved to ABOUT LINE TYPES AND FIELD PAIRS.

The description of the datetime "combo" has been moved and is now part of the DATE field pair
definition.

Improved the definition of the LINE field pair.

Clarified the two situations where the MESG and MTYPE field pairs are used.

Corrected the SMS info for NAME and MESG definitions.

April 26, 2019

General changes

A small change to the HTML formatting for improved appearance.

Feature Set 1: Modem and Device Support

Server Implementation

Added 254 Start of call log line because it was previously undocumented.

October 27, 2018

Feature Set 1: Modem and Device Support

SERVER IMPLEMENTATION

Changed description of hangup and when CID: line is sent.

Server Output Lines

Added "-4 = (modem) automatic hangup completed" to the CIDINFO table.

Appendix C: Quick Reference List of all server configuration settings

Removed cidnoname from table

August 17, 2018

Before you begin

ABOUT CONFIGURATION OPTIONS FOR SERVER IMPLEMENTATIONS

Added XDMF Gateway settings line to the table

Feature Set 1: Modem and Device Support

SERVER IMPLEMENTATION

Server Output Lines

Added "-3 = (gateway) BUSY signal for incomplete call" to the CIDINFO table.

Modem-to-server

Changed Formatted Caller ID to ASCII Format Caller ID.

Removed references to the Comet.

Changed Unformulated Caller ID to XDMF ASCII Format Caller ID.

Feature Set 2: Gateway Support

SERVER IMPLEMENTATION

Added a CIDINFO: line with BUSY if the ring count is -3.

Added XDMF Input.

Added Holtek HT9032D operation mode.

May 31, 2018

General changes

Wherever practical, lists of line types were changed to {CALLTYPE} or {MSGTYPE}.

Redundant copies of field pair tables were removed and replaced with
links to {CALLTYPE} Category Structure
or {MSGTYPE}
Category Structure.

Renamed all call-type links to be line-type links.

All +XXX: and XXXLOG:
definitions were removed because it is redundant data and is not
of value. They have the same
definitions as XXX:.

Appendix B: Index to all line type definitions
doesn't need "new in API" notations.

Before you begin

About Line Types and Field Pairs

Renamed "About Field Pairs and Line Types" to "About Line Types and Field Pairs".

Swapped section order of "Field Pairs" and "Line Types" in order to
explain XXX convention.

Feature Set 1: Modem and Device Support

Server Implementation

Added ncidd.conf::cidlogmax to discussion about ncidd.conf::send cidlog.

Added missing reference to Hangup Extensions.

Server Implementation -> Server Output Lines

CIDINFO: Updated ring count descriptions to more accurately describe the values.

HUP: Added missing
reference to Hangup Extensions.

LOG: Updated with a more
realistic example.

MSG: Added
missing server alert definition.

Server Implementation -> Modem-to-Server

Moved and improved wording describing when caller ID is sent by
telcos in different countries.

Client Implementation

Moved XXXLOG: lines to be prior to line type 250. Added missing reference to LOG:.

Combined hangup and hangup-1 to the same table row.

Feature Set 2: Gateway Support

Server Implementation -> Server Output Lines

END: updated to clarify
that CTYPE can only be IN or OUT.

PID: removed reference
to output module ncid-notify.

WID: cosmetic, moved "(new in API 1.1)" to end of line.

Gateway Implementation

Clarified "CALL field" is "CALL<type> field".

Simplified and shortened text explaining CALL:
text line format.

Fixed typo, NOT: uses MTYPE and not TYPE.

Gateway Implementation -> Gateway-to-Server

CALL: clarified use of CALLtype when using IN, CID and PID.

CALLINFO: clarified use of CALLtype when using IN, CID and PID.

MSG: added
missing gateway alert definition.

Gateway Implementation -> Gateway-to-Server

CALLINFO: changed
'CALL<type>' to 'CALL<io>'. CALLio can only be IN or OUT.

MSG: added
missing gateway output definition.

Client Implementation

Consolidated individual LOG: lines to XXXLOG:.

Feature Set 3: Client Job Support

Client Implementation

Fixed link for 555-01XX fictional numbers.

Feature Set 4: Acknowledgment Support

Clarified that this Feature Set applies to gateways as well as clients. Removed some repetitive explanations. Sorted request lines
alphabetically within sections. Improved overall wording for clarity.

Server Implementation -> Server Output Lines

Fixed example by changing PID: to CALL:.

Gateway Implementation -> Gateway-to-Server

Added missing definitions for REQ: ACK
depending on whether it's for a gateway or client implementation.

Appendix A: Copy-and-paste friendly {CALLTYPE} and {MSGTYPE}

Appendix A renamed from "Quick Reference List of all call type line identifiers" to "Copy-and-paste friendly {CALLTYPE} and
{MSGTYPE}".
Removed types not likely to be used. Added MWI,
PUT and RID.

Appendix B: Index to all line type definitions

Appendex B Converted to a table and added all
new columns.

Appendix D: More info about modem MESG hexadecimal characters

Modem 'MESG' data string is MDMF. Fixed broken links to external
documents.

November 5, 2017

General changes

There were several places where features or line types were listed under
Feature Set 1 when they should have been listed under
Feature Set 2 or 3.
In particular, verbiage related to gateways in Feature Set 1 was moved to,
or duplicated, to their rightful

place in Feature Set 2. Links updated.

"Smart phone" was changed to "smartphone".

Changed API Version Change History and Documentation Change History sections to use fewer font sizes. This improves
readability.

Some colons were missing in ACK: and REQ: line references.

Added new INFO: dial line to all Client Job
examples.

Added new OPT: LineIDs: to examples where appropriate.

Before you begin

About End-of-line Terminators

New

Ensuring connectivity with the server

Clarified that the three methods to test connectivity are listed in order of increasing robustness.

REQ: YO is supported in Feature Set 4 not Feature Set 2.

Feature Set 1: Modem and Device Support

Server Implementation -> Server Output Lines

Call/line types now in alphabetical order, e.g., CIDINFO: now before CIDLOG:.

MSG: server definition: removed incorrect reference to "user generated message".

OPT: definition:

Clarified that unless otherwise noted, all OPT: lines should be ignored. It is an exception if a client needs to use them.

Expanded descriptions of existing OPT: lines.

Server Hangup Support

Alphabetical list of related server configuration options:

Added cidinput, removed nomodem and noserial.

Server Implementation -> Optional Server Hangup Extension

Clarified that other lines to STDOUT will be logged in ncidd.log.

Client Implementation

Improved wording regarding xxxLOG: lines. Added MSGLOG:.

Clarified that unless otherwise noted, all OPT: lines should be ignored. It is an exception if a client needs to use them.

Client Implementation -> Client-to-Server

Moved HELLO: definition from Client Implementation overview to Client-to-Server section.

Slight rewording of HELLO: CMD: no_log to improve reading flow for new HELLO: CMD: send_log command.

MSG: client definition: added example.

Feature Set 2: Gateway Support

Server Implementation -> Server Output Lines

Renamed "Server-to-Gateway" to "Server Output Lines" because the lines will be received by clients as well as gateways.

Call/line types now in alphabetical order, e.g., CIDINFO: now before END:.

Client Implementation

Removed MSG: and MSGLOG:
because they belong in Feature Set 1.

Clarified that unless otherwise noted, all OPT: lines should be ignored. It is an exception if a client needs to use them.

Added missing MSGLOG:

Removed reference to Client Jobs as it is for Feature Set 3.

xxxLOG: list now in alphabetical order.

Feature Set 3: Client Job Support

Overview of Available Client Jobs

The table briefly describing each Client Job command had been duplicated in the Overview of Available Client Jobs and Client
Job Examples sections. The Overview now has a link to the table instead.

Server Implementation

Removed summary of REQ: and WRK: requests. These are adequately documented elsewhere.

Server Implementation -> Server Output Lines

Made description more generic by removing reference to ncidutil.

Server Implementation -> Server Output Lines -> 402

Made description more generic by removing reference to ncidutil.

Server Implementation -> Server Output Lines -> INFO:

Added text label "Format 1" and "Format 2". Added 401
and 410 to Format 1. Removed duplicated Format 2 INFO: lines that are
already listed under REQ: INFO.

A third INFO: line has been added to indicate
whether the server has been enabled to dial numbers with a locally attached
modem.

Server Implementation -> Server Output Lines -> RESP:

Made description more generic by removing reference to ncidutil.

Client Implementation

Clarified that unless otherwise noted, all OPT: lines should be ignored. It is an exception if a client needs to use them.

Client Implementation -> Client-to-Server -> REQ: INFO]

Clarified which fields must have an exact match.

A third INFO: line has been added to indicate whether the server has been enabled to dial numbers with a locally attached
modem.

Client Job Examples

Clarified difference beween client and server links. Added server response code to server links.

Feature Set 4: Acknowledgment Support

Changed YO to be REQ: YO.

Gateway Implementation -> Gateway-to-Server

Line types now in alphabetical order, e.g., REQ: ACK now before REQ: ACK.

Appendix A: Quick Reference List of all call type line identifiers

Call types beginning with '+' now have their own section in Feature Set 2.

Appendix B: Index to all line type definitions

Call types beginning with '+' now have their own section in Feature Set 2.

Split out the HELLO: line types based on feature set.

Added +MSG link for forwarding gateway.

Appendix C: Quick Reference List of all server configuration settings

Added cidinput, removed nomodem and noserial.

November 6, 2016

Sending a Text Message

Added HELLO: lines.

Appendix B: Index to all line type definitions

Added line type HELLO:.

September 30, 2016

General changes

Changed fs3-job-support links to fs3-client-job support to distinguish
them from the new fs5-relay-job-support links.

Changed all references to the MESG*<msg>* field pair to be MESG*<hexchars>*.

In all field pair tables, added "being sent to the server" to the
description for ### and "being sent from the server" to the
description for ***.

Before you begin

About configuration options for server implementations

Expanded list of configuration files.

Changed example of ncidd.conf::cidlias to be the less confusing
example of ncidd.conf::lockfile.

About line types and field pairs

Change description and examples in Field Pairs section to explain
that the prefix for a first field pair is either ### to indicate
the line is being sent to the server, or *** to indicate it is
being sent from the server.

General notes on NAME, NMBR, LINE and MESG field data

Expanded description for MESG field data.

Feature Set 1: Modem and Device Support

Modem-to-Server

Clarified descriptions of MESG and DDN_NMBR; changed NAME in example
to be JOHN DOE.

Optional Server Hangup Extension

Improved description of how Hangup Extension scripts work.

Appendix D: More info about modem MESG hexadecimal characters

New

July 23, 2016

General changes

None.

Feature Set 1: Modem and Device Support

Server Implementation

Optional Server Hangup Extension

New

May 7, 2016

General changes

Updates for API 1.3.

API Version Change History -> Release Summary

New

Several sections in API 1.2 were incorrectly marked "(new in API 1.2)"
when in fact these were documentation changes only and
not functional
changes. These have been corrected.

References to specific ncidd.conf setting names were changed to
the convention <configuration file name::setting name>
throughout the document.

Formatting changes throughout to make rendering more compatible with
the Haroopad markdown editor.

References to hangup logic changed as appropriate to be "Internal
Hangups" or "Hangup Extensions" to accommodate new
Hangup Extensions.

When Internal Hangups are enabled, OPT: hangup lines will now have the format OPT: hangup-X where "X" is the hangup mode
in the range 1-3. Log file examples were
changed throughout from OPT: hangup to
OPT: hangup-1.

When Hangup Extensions are enabled, the server will send OPT: hupmode-X lines where "X" is the hangup mode in the range 1-
3.

Added "Released simultaneously with NCID..." to API Version history 1.0 to 1.3.

Added text "Appendix A:" in front of "Quick Reference List of all call type line identifiers".

Added text "Appendix B:" in front of "Index to all line type definitions".

Before you begin

About configuration options for server implementations

New

Feature Set 1: Modem and Device Support

Server Implementation

Optional Server Extensions

New

Optional Server Hangup Extension

New

Server Implementation -> Server Output Lines

Clarified what "hangup" means for CIDINFO: lines.

Expanded description for OPT: .

Feature Set 2: Gateway Support

Gateway Implementation

Clarified what "hangup" means for CALL: lines.

Feature Set 3: Client Job Support

Client Implementation

Improved wording on features that will probably be needed for a GUI
client.

API Version 1.2 History

Feature Set 3: Client Job Support -> Client Implementation

Removed the OPT: hangup requirement
from the client section but not the server section.

Feature Set 3: Client Job Support -> Client-to-Server

The reference to OPT: hangup added in
API Version 1.1 was removed.

API Version 1.1 History

Feature Set 3: Client Job Support -> Client Job Output Lines

Added these lines to indicate OPT: hangup from the server was not
required to edit the blacklist and whitelist files:

(Removed in API 1.1)

The following require receiving OPT: hangup from the server:

Did not remove the OPT: hangup
requirement from the server and client implementation sections.

Appendix C: Quick Reference List of all server configuration settings

New

December 29, 2015

General changes

Updates for API 1.2.

NCID-API converted from OpenDocument Text (.odt) to Markdown (.md).

Reworked formatting for all tables for better readability.

All ambiguous references to line or label were changed to lineid.

Where appropriate, tables defining <field label><field data> pairs for NAME, NMBR, LINE and MESG were changed to have a
clickable link to the new General notes on NAME, NMBR, LINE and MESG field data
section.

Similarly, where appropriate, tables defining <field label><field data> pairs for DATE and TIME were changed to have a
clickable link to the new General notes on DATE and TIME field data
section.

Section headings were renamed to more clearly indicate their content.

Examples:

Old New

Modem input to the server Modem-to-Server

Gateway Output Lines Gateway-to-Server

Before you begin

About field pairs and line types

New

General notes on NAME, NMBR, LINE and MESG field data

New

General notes on DATE and TIME field data

New

Ensuring connectivity with the server

New

Companion documents

New

Feature Set 1: Modem and Device Support

Server Implementation

Added \n (newline) section.

Server Implementation -> Server Output Lines

Clarified that OPT: options are always
lowercase unless otherwise indicated.

Server Implementation -> Server Alias Support

New

Server Implementation -> Server Hangup Support

New

Client Implementation -> Client-to-Server

Added \n (newline) section.

Optional Client-to-Module

Added standard input line 8 to have message type.

Feature Set 3: Client Job Support

Feature Set 3 has been significantly enhanced with new content.

Overview of Available Client Jobs

New

Client Implementation -> Client-to-Server

Added: Modifying an alias and specifying a new alias of nothing (null) is the same as removing an existing alias.

Added: REQ: alias remove syntax

Server Implementation

Fixed typo in INFO: alias section - NMBDEP was changed to NMBRDEP.

Server Implementation -> Server Output Lines

400: section was clarified by adding the sentence: "Nothing is sent back to the server."

Added NOALIAS to INFO: section.

Client Job Examples

New

Appendix A: Quick Reference List of all call type line identifiers

New

Appendix B: Index to all line type definitions

New

